首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(a,2,10)T,α2=(-2,1,5)T,α3=(-1,1,4)T,β=(1,b,c)T.试问:当a,b,c满足什么条件时, (1)β可由3线性表出,且表示唯一? (2)β不能由α1,α2,α3线性表出? (3)β可由α1,α
设向量组α1=(a,2,10)T,α2=(-2,1,5)T,α3=(-1,1,4)T,β=(1,b,c)T.试问:当a,b,c满足什么条件时, (1)β可由3线性表出,且表示唯一? (2)β不能由α1,α2,α3线性表出? (3)β可由α1,α
admin
2014-01-27
46
问题
设向量组α
1
=(a,2,10)
T
,α
2
=(-2,1,5)
T
,α
3
=(-1,1,4)
T
,β=(1,b,c)
T
.试问:当a,b,c满足什么条件时,
(1)β可由
3
线性表出,且表示唯一?
(2)β不能由α
1
,α
2
,α
3
线性表出?
(3)β可由α
1
,α
2
,α
3
线性表出,但表示不唯一?并求出一般表达式.
选项
答案
(1)a≠4; (2)a=-4; (3)a=-4且3b—c=1,β=tα
1
-(2t+b+1)α
2
+(2b+1)α
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/7L34777K
0
考研数学二
相关试题推荐
[2014年]设α1,α2,α3是三维向量,则对任意常数k,l,向量α1+kα3,α2+α3线性无关是向量α1,α2,α3线性无关的().
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
(14年)证明n阶矩阵相似.
(03年)设f(χ)=试补充定义f(1)使得f(χ)在[,1]上连续.
(87年)求解线性方程组
(90年)设f(χ)在闭区间[0,c]上连续,其导数f′(χ)在开区间(0,c)内存在且单调减小,f(0)=0,试应用拉格朗El中值定理证明不等式f(a+b)≤f(a)+f(b)其中a、b满足条件0≤a≤b≤a+b≤c.
[2007年]设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下X的条件密度fX|Y(x|y)为().
[2011年]设A为三阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。(Ⅰ)证明:r(A)=2;(Ⅱ)设β=α1+α2+α3,求方程组Ax=β的通解。
(2017年)设X1,X2,…,Xn(n≥2)为来自总体N(μ,1)的简单随机样本,记Xi,则下列结论中不正确的是()
随机试题
下列动脉瘤中不属于真性动脉瘤的是:
政务微博虽然只是网络问政的一个窗口,但它_______着执政为民的态度和决心。近一年来,人们对政务微博有了更高的_______,不只希望政府机构开微博,更盼望政务微博能带来更多的变化,特别是在加强与公众沟通、回应公众诉求上有更大的_______。填入画横线
【背景资料】某地区新建一座大型自来水厂,主要单位工程有沉淀池、过滤池、消毒池等,整个工程由W建筑公司中标施工。其中沉淀池为无盖圆形池,直径40m,基础为现浇混凝土结构,厚500mm,该基础由四周向中心呈漏斗形,其高点顶面标高22.50m,低点顶面
下列选项中,能够协调股东与债权人利益冲突的方式有()。
下列选项中,表述不正确的是()。
抢先在竞争对手之前不断推出新的产品和生产工艺来占领市场,以进人新的或扩大原有的技术领域或市场领域的战略类型是()。
信息校核的方法有()、溯源法、核对法、调查法、数据统计法。
行政机关违法实施行政许可,给当事人的合法权益造成损害的,应当依照国家赔偿法的规定给予赔偿。()
适度扩大需求总量,积极调整改革需求结构,促进供给需求有效对接、投资消费有机结合、城乡区域协调发展是为了()。
非法小广告并非一城之疾,根治也并非一城之事。单靠一地立法或各地分散立法,无法形成________________的治理合力,相关的行政执法权威也难以________________,更难达到治本之效。填入画横线部分最恰当的一项是:
最新回复
(
0
)