首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
admin
2021-10-18
52
问题
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
选项
答案
因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,故f(x)在[0,2]取到最大值M和最小值m,显然3m≤f(0)+f(1)+f(2)≤3M,即m≤1≤M,由介值定理,存在c∈[0,2],使得,f(c)=1.因为f(x)在[c,3]上连续,在(c,3)内可导,且f(c)=f(3)=1,根据罗尔定理,存在ξ∈(c,3)∈(0,3),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Wty4777K
0
考研数学二
相关试题推荐
在曲线y=(χ-1)2上的点(2,1)处作曲线的法线,由该法线、χ轴及该曲线所围成的区域为D(y>0),则区域D绕χ轴旋转一周所成的几何体的体积为().
设向量组α1,α2,…,αn-1为n维线性无关的列向量组,且与非零向量β1,β2正交.证明:β1,β2线性相关.
求
设f(x)连续,且F(x)=∫0x(x-2t)f(t)dt.证明:若f(x)是偶函数,则F(x)为偶函数;
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX:0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B
设函数y=f(χ)可微,且曲线y=f(χ)在点(χ0,f(χ0))处的切线与直线y=2-χ垂直,则=
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2,(1)证明:Aα1,Aα2,Aα3线性无关;(2)求|A|.
设f(x)为[0,1]上的单调增加的连续函数,证明:.
设z=f(eχsiny,χy),其中f二阶连续可偏导,求.
设求f(x)的间断点并判断其类型.
随机试题
市场营销策划的特点包括()
—DoyouknowwhatTomdoesallday?—IknowhespendsatleastasmuchtimewatchingTVashe______hislessons.
A.NAP强阳性B.t(9,22)(q34,q11)C.PAS阳性D.POX阳性E.非特异酯酶阳性,能被NaF抑制急性单核细胞白血病
患者,男,70岁。咳嗽、咳痰,伴痰中带血3个月。胸片提示右肺门类圆形阴影,边缘毛躁,有分叶。肺癌非转移胸外表现(副癌综合征)有哪些
案件进入审判阶段后,辩护律师可以享有哪些权利?
关于粗集料表观密度、针片状颗粒含量、磨光值、洛杉矶磨耗、坚同性试验方法,请回答以下问题。关于粗集料坚固性试验,描述正确的有()。
(2006年)图5-24所示的矩形截面和正方形截面具有相同的面积。设它们对对称轴y的惯性矩分别为Iya、Iyb,对对称轴z的惯性矩分别为Iza、Izb,则()。
不可否认,特殊类型招生是我国在一定历史阶段的产物,它曾经对经济社会和教育的发展发挥过重要作用。但随着时代的变迁,我们有必要对招生制度作出调整和规范,以更好适应环境的变化和社会的需求。表面看,给保送“瘦身”,再加上对高考加分政策的一再收紧,意味着“特殊通道”
正确的SQL插入命令的语法格式是
Youshouldspendabout20minutesonQuestions28-41whicharebasedonReadingPassage3below.T
最新回复
(
0
)