首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]_上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f”(ξ)|≥|f(b)-f(a)|·
设f(x)在[a,b]_上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f”(ξ)|≥|f(b)-f(a)|·
admin
2019-11-25
74
问题
设f(x)在[a,b]_上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f”(ξ)|≥
|f(b)-f(a)|·
选项
答案
由泰勒公式得 f([*])=f(a)+f’(a)([*]-a)+[*]([*]-a)
2
,ξ
1
∈(a,[*]), f([*])=f(b)+f’(b)([*]-b)+[*]([*]-b)
2
,ξ
2
∈([*],b), 即f([*])=f(a)+[*]f”(ξ
1
),f([*])=f(b)+[*]f”(ξ
2
), 两式相减得f(b)-f(a)=[*][f”(ξ
1
)-f”(ξ
2
)], 取绝对值得|f(b)-f(a)|≤[*][ |f”(ξ
1
)|+|f”(ξ
2
)|]. (1)当f”(ξ
1
)|≥|f”(ξ
2
)|时,取ξ=ξ
1
,则有|f”(ξ)|≥[*]|f(b)-f(a)|; (2)当|f”(ξ
1
)|<|f”(ξ
2
)|时,取ξ=ξ
2
,则有|f”(ξ)|≥[*]|f(b)-f(a)|.
解析
转载请注明原文地址:https://kaotiyun.com/show/XBD4777K
0
考研数学三
相关试题推荐
证明不等式一∞<x<+∞.
设a0,a1,an-1为n个实数,方阵(1)若λ是A是一个特征值,证明α=[1,λ,λ2,…,λn-1]T是A的对应于λ的特征向量;(2)若A的特征值两两互异,求一可逆矩阵P,使得P-1AP为对角矩阵.
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量.证明:ξ,η正交.
设A是3阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量.证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设f(x)在区间[0,1]上连续,在区间(0,1)内存在二阶导数,且f(0)=f(1).证明:存在ξ∈(0,1)使2f’(ξ)+ξf"(ξ)=0.
设f(x)在[a,b]上存在二阶导数,且f"(x)>0.证明:
证明:当成立.
随机试题
简述调查人员的三项基本职责。
Themanagerclaimedthathiscompanyhadthe()rightofpublication.
川乌的剧毒成分是
A.抗感染B.剖胸探查C.同定胸壁D.穿刺排气减压E.迅速封闭胸壁伤口开放性气胸的紧急处理应
砌筑拱和拱顶时,必须()。
按照《公路工程国内招标文件范本》的相关规定,投标人的投标文件必须包括()
某二级耐火等级的办公室,建筑高度为24m,其周边布置有多个二级耐火等级的建筑,下列关于该办公建筑与周边建筑物防火间距的做法中,正确的有()。
下列各项中,关于明显微小错报的说法中,不恰当的是()。
2005年5月3日,受中共中央和国务院的委托,中共中央台湾工作办公室、国务院台湾事务办公室主任陈云林宣布,大陆同胞向台湾同胞赠送一对象征和平团结友爱的大熊猫;同时宣布,大陆有关方面将于近期开放大陆居民赴台湾(),扩大开放台湾()准入并对其中
Ifyouwanttoimproveyourchild’sresultsatschool,【T1】______thattheydoplentyofexercise.Scientistshavealreadyshownt
最新回复
(
0
)