首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]_上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f”(ξ)|≥|f(b)-f(a)|·
设f(x)在[a,b]_上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f”(ξ)|≥|f(b)-f(a)|·
admin
2019-11-25
73
问题
设f(x)在[a,b]_上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得|f”(ξ)|≥
|f(b)-f(a)|·
选项
答案
由泰勒公式得 f([*])=f(a)+f’(a)([*]-a)+[*]([*]-a)
2
,ξ
1
∈(a,[*]), f([*])=f(b)+f’(b)([*]-b)+[*]([*]-b)
2
,ξ
2
∈([*],b), 即f([*])=f(a)+[*]f”(ξ
1
),f([*])=f(b)+[*]f”(ξ
2
), 两式相减得f(b)-f(a)=[*][f”(ξ
1
)-f”(ξ
2
)], 取绝对值得|f(b)-f(a)|≤[*][ |f”(ξ
1
)|+|f”(ξ
2
)|]. (1)当f”(ξ
1
)|≥|f”(ξ
2
)|时,取ξ=ξ
1
,则有|f”(ξ)|≥[*]|f(b)-f(a)|; (2)当|f”(ξ
1
)|<|f”(ξ
2
)|时,取ξ=ξ
2
,则有|f”(ξ)|≥[*]|f(b)-f(a)|.
解析
转载请注明原文地址:https://kaotiyun.com/show/XBD4777K
0
考研数学三
相关试题推荐
f(x)在(一∞,+∞)上连续,=+∞,且f(x)的最小值f(x0)<x0,证明:f[f(x)]至少在两点处取得最小值.
设0<k<1,f(x)=kx—arctanx.证明:f(x)在(0,+∞)中有唯一的零点,即存在唯一的x0∈(0,+∞),使f(x0)=0.
证明不等式一∞<x<+∞.
如图1.3—1所示,设曲线方程为梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0.证明:
若A,B均为n阶矩阵,且A2=A,B2=B,r(A)=r(B),证明:A,B必为相似矩阵.
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量.证明:ξ,η正交.
设A是3阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量.证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
设A,B是n阶方阵,证明:AB,BA有相同的特征值.
设f(x)在[a,b]上存在二阶导数,且f"(x)>0.证明:
随机试题
女驾驶人穿高跟鞋驾驶车辆,不利于安全行车。
资料:某事业单位2010年8月31日有关总账余额如下表:要求:(1)计算该事业单位2010年8月31日各会计要素的金额;(2)在收入与支出尚未结转的情况下,用公式说明各会计要素的相互关系;(3)从静态要素和动态要素的角度,说明各会计要素的相互关系
简述财产税制的分类。
简述影响遗忘进程的因素。
急性口服中毒者,最常使用的吸附剂是
勘探线和勘探点的布置应根据工程地质条件、地下水情况和滑坡形态确定。除沿主滑方向应布置勘探线外,在其两侧滑坡体外也应布置一定数量勘探线。勘探点间距不宜大于多少?
轨道板生产后存放在堆放场,码堆层数(),配备专用吊具,进行出车间后的起重运输及装车。有绝缘轨道板和无绝缘轨道板分区堆放。
在进行实物财产清查时,对下列()不用发函询证。
形成性评价与终结性评价有什么不同?并分别列举二者的几种评价方式。
在我国发明专利的保护期限为(33)年,实用新型专利和外观设计专利的期限为(34)年。中国专利局授予的专利权适用的范围为(35)。商业秘密受保护的期限是(36)。
最新回复
(
0
)