首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上连续,在区间(0,1)内存在二阶导数,且f(0)=f(1).证明:存在ξ∈(0,1)使2f’(ξ)+ξf"(ξ)=0.
设f(x)在区间[0,1]上连续,在区间(0,1)内存在二阶导数,且f(0)=f(1).证明:存在ξ∈(0,1)使2f’(ξ)+ξf"(ξ)=0.
admin
2018-09-20
59
问题
设f(x)在区间[0,1]上连续,在区间(0,1)内存在二阶导数,且f(0)=f(1).证明:存在ξ∈(0,1)使2f’(ξ)+ξf"(ξ)=0.
选项
答案
由f(0)=f(1)知,存在η∈(0,1)使f’(η)=0. 令F(x)=x
2
f’(x),有 F(0)=0,F(η)=η
2
f’(η)=0, 故知存在ξ∈(0,η)[*](0,1)使F’(ξ)=0. 而F’(x)=2xf’(x)+x
2
f"(x),即有 2ξf’(ξ)+ξ
2
f"(ξ)=0. 又ξ≠0,所以2f’(ξ)+ξf"(ξ)=0.证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/tjW4777K
0
考研数学三
相关试题推荐
设总体x的密度函数为f(x,θ)=(一∞<z<+∞),求参数θ的矩估计量和最大似然估计量.
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
设A,B为n阶矩阵,且r(A)+r(B)<n,证明:A,B有公共的特征向量.
设证明:f(x,y)在点(0,0)处可微,但在点(0,0)处不连续.
设随机变量X服从参数为2的指数分布,证明:Y=1一e一2X在区间(0,1)上服从均匀分布.
已知线性方程组问:(1)a,b为何值时,方程组有解?(2)有解时,求出方程组导出组的一个基础解系;(3)有解时,求出方程组导出组的全部解.
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,—1,a+2,1)T,α2=(—1,2,4,a+8)T(Ⅰ)求方程组(1)的一个基础解系;(Ⅱ)当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非
已知函数f(u,υ)具有连续的二阶偏导数,f(1,1)=2是f(u,υ)的极值,已知z=f[(x+y),f(x,y)]。求
设函数f(x),g(x)具有二阶导数,且g"(x)<0。若g(x0)=a是g(x)的极值,则f[g(x)]在x0取极大值的一个充分条件是()
随机试题
FTP指的是________。
Aresomepeopleborncleverandothersbornstupid?Orisintelligencedevelopedbyourenvironmentandourexperiences?Strange
妊娠近足月,下列哪项提示胎盘功能低下
如何评定食品和化妆品包装计量检验结果?
消费税最终由消费者负担,为了提高征收效率,降低征税费用,防止税款流失,我国的消费税在()环节征收。
关于施工文件档案管理的说法,正确的是( )。
“见善如不及,见不善如探汤”是习近平总书记系列重要讲话文章中引经据典之一,它出自()。
王某、赵某及孙某临时起意共谋深夜到附近的华丰公司盗窃,在盗窃前三人商量好从华丰公司的后墙进入到其仓库进行盗窃,由孙某负责盗窃所需要的工具及提前查探线路,王某潜入仓库窃取财物,赵某在华丰公司后墙处望风。当晚王某成功进入到华丰公司的仓库,赵某在望风的时候,恰巧
IwasmostsurprisedtohearSusan’smarriage.
Gettingbehindthewheelofacarcanbeanexcitingnewstepinateen’slife.Butalongwiththatexcitementcomesanew【B1】__
最新回复
(
0
)