首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:方程xα=lnx(α<0)在(0,+∞)上有且仅有一个实根.
证明:方程xα=lnx(α<0)在(0,+∞)上有且仅有一个实根.
admin
2016-09-13
79
问题
证明:方程x
α
=lnx(α<0)在(0,+∞)上有且仅有一个实根.
选项
答案
令f(x)=lnx-x
α
,则f(x)在(0,+∞)上连续,且f(1)=-1<0,[*]=+∞,故[*],当x>X时,有f(x)>M>0,任取x
0
>X,则f(1)f(x
0
)<0,根据零点定理,[*]∈(1,x
0
),使得f(ξ)=0,即方程x
α
=lnx在(0,+∞)上至少有一实根.又1nx在(0,+∞)上单调增加,α<0,-x
α
也单调增加,从而f(x)在(0,+∞)上单调增加,因此方程f(x)=0在(0,+∞)上只有一个实根,即方程x
α
=lnx在(0,+∞)上只有一个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/XDT4777K
0
考研数学三
相关试题推荐
“三个代表”重要思想创造性回答和解决的问题是()。
0.9
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
由题设条件有βTαi=0(i=1,2,…,r),设k1α1+k2α2+…+krαr+kr+1β=θ,(*)两端左乘βT,得kr+1βTβ=0;又β≠θ,可得βTβ=||β||2>0,故kr+1=0,代入式(*),得k1α1+k2
求下列三重积分
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
求下列欧拉方程的通解:(1)x2y〞+3xyˊ+y=0;(2)x2y〞-4xyˊ+6y=x;(3)y〞-yˊ/x+y/xx=2/x;(4)x3y〞ˊ+3x2y〞-2xyˊ+2y=0;(5)x2y〞+xyˊ-4y=x3;(6)x
设f(x,y,z)为连续函数,∑为平面x-y+z=1在第四卦限部分的上侧,求
设f(x)是连续函数,F(x)是f(x)的原函数,则().
随机试题
在大多数汽车的悬架系统内都装有减振器,减振器和弹性元件是串联安装的。()
战略计划与战术计划的区别是什么?
男,62岁,全牙列缺失,最近出现一系列软组织改变及异常现象中不包括A.牙槽黏膜变薄B.口腔内唾液增加C.唇颊系带与牙槽嵴顶的距离变短D.味觉异常E.口角下陷
业主在项目实施阶段是按()规定为项目顺利实施提供必要的条件的。
海因里希将事故因果连锁过程概况为五个要素,并用多米诺骨牌来形象地描述这种事故因果连锁关系,五个因素为()
设备制造工程,需要进行监控,监控的方式有()。
交易型开放式指数基金和上市开放式基金均属于特殊类型基金。()
个人教育贷款的业务特征包括()。
试述中国特色社会主义共同理想与共产主义远大理想的关系。
PlantsandMankindBotany,thestudyofplants,occupiesapeculiarpositioninthehistoryofhumanknowledge.Wedon’tkno
最新回复
(
0
)