首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足 Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2. 求矩阵A的特征值。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足 Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2. 求矩阵A的特征值。
admin
2019-09-29
62
问题
设A是三阶矩阵,a
1
,a
2
,a
3
为三个三维线性无关的列向量,且满足
Aa
1
=a
2
+a
3
,Aa
2
=a
1
+a
3
,Aa
3
=a
1
+a
2
.
求矩阵A的特征值。
选项
答案
因为a
1
,a
2
,a
3
线性无关,所以a
1
+a
2
+a
3
≠0. 由A(a
1
+a
2
+a
3
)=2(a
1
+a
2
+a
3
),得A的一个特征值为λ
1
=2. 又由A(a
1
-a
2
)=-(a
1
-a
2
),A(a
2
-a
3
)=-(a
2
-a
3
),得A的另外一个特征值为λ
2
=-1,因为a
1
,a
2
,a
3
线性无关,所以a
1
-a
2
与a
2
-a
3
也线性无关,所以λ
2
=-1为矩阵A的二重特征值,则A的特征值为2,-1,-1.
解析
转载请注明原文地址:https://kaotiyun.com/show/XFA4777K
0
考研数学二
相关试题推荐
设A为n阶方阵,齐次线性方程组Ax=0有两个线性无关的解向量,A*是A的伴随矩阵,则()
n阶矩阵A经过若干次初等变换化为矩阵B,则().
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0x(x-t)dt,G(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的().
设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().
设f(x)=(x一a)(x一b)(x一c)(x一d),其中a,b,c,d互不相等,且f’(k)=(k一a)(k一b)(k一c),则k的值等于()
函数f(χ)=|χsinχ|ecosχ,-∞<χ<+∞是().
设二次型f(x1,x2,x3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中求矩阵A.
当χ→1时,f(χ)=的极限为().
设函数y=f(x)在区间[0,1]上非负、存在二阶导数,且f(0)=0,有一块质量均匀的平板D,其占据的区域是曲线y=f(x)与直线x=1以及x轴围成的平面图形.用表示平板D的质心的横坐标.求证:若f’(x)>0(0≤x≤1),则(如图1-10-4)
设平面薄片所占的区域D由抛物线y=x2及直线y=x所围成,它在(x,y)处的面密度ρ(x,y)=x2y,求此薄片的重心.
随机试题
凡具有国家规定基本条件的研究生均可享受()
A.经刺激外周化学感受器兴奋呼吸中枢B.经刺激中枢化学感受器兴奋呼吸中枢C.直接抑制呼吸中枢D.直接兴奋呼吸中枢低O2对呼吸中枢的直接作用是
缺少下列哪种微量元素会导致生长发育停滞、性成熟受抑制()。
不属于药品的是
如下哪项是脑栓塞的栓子最常见来源
根据下面资料回答问题。2009年1~7月全国房地产市场运行情况房地产开发完成情况1~7月,全国完成房地产开发投资17720亿元,同比增长11.6%,增幅比1~6月提高1.7个百分点,比去年同期回落19.3个百分点。其中,商品
施工组织设计除了工程概况、施工部署及施工方案、施工进度计划、施工平面图以外,还应该包括()。
由于受到国内外各种错误思潮、腐朽观念等各种因素的影响,现实中还存在拜金主义、享乐主义和极端个人主义等错误的思想和观念。这些错误的思想和观念产生的原因在于
Whereisthisconversationtakingplace?
A、Maderiawasnotchosenbecauseitsroadsweretoodangerous.B、TheCostaDelSolwasfinallychosenafterthreemonthsofinve
最新回复
(
0
)