首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=[1,一1,1]T,α2=[1,t,一1]T,α3=[t,1,2]T,β=[4,t2,一4]T,若β可由α1,α2,α3线性表示,且表示法不唯一,求t及β的表达式.
已知α1=[1,一1,1]T,α2=[1,t,一1]T,α3=[t,1,2]T,β=[4,t2,一4]T,若β可由α1,α2,α3线性表示,且表示法不唯一,求t及β的表达式.
admin
2018-08-22
28
问题
已知α
1
=[1,一1,1]
T
,α
2
=[1,t,一1]
T
,α
3
=[t,1,2]
T
,β=[4,t
2
,一4]
T
,若β可由α
1
,α
2
,α
3
线性表示,且表示法不唯一,求t及β的表达式.
选项
答案
设x
1
α
1
+x
2
α
2
+x
3
α
3
=β,按分量写出为 [*] 对增广矩阵进行初等行变换得 [*] 由条件知[*]从而t=4,此时,增广矩阵可化为 [*] 其通解为[*]k为任意常数.所以 β=一3kα
1
+(4一k)α
2
+kα
3
,k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/XFj4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)-f(y)|≤M|x-y|k.证明:当k>0时,f(x)在[a,b]上连续;
设齐次线性方程组,其中ab≠0,72≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
设A=(aij)n×n为实对称矩阵,求二次型函数f(x1,x2,…,xn)=在Rn上的单位球面S:x12+x22+…+xn2=1上的最大值与最小值.
设a0,a1,…,an-1是n个实数,方阵(1)若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;(2)若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使P-1AP=A.
设A是三阶实对称阵,λ1=一1,λ2=λ3=1是A的特征值,对应于λ1的特征向量为ξ1=[0,1,1]T,求A.
设一质点在单位时间内由点A从静止开始作直线运动至点B停止,两点A,B间距离为1,证明:该质点在(0,1)内总有一时刻的加速度的绝对值不小于4.
汽艇以27(km/h)的速度,在静止的海面上行驶,现在突然关闭其动力系统,它就在静止的海面上作直线滑行,设已知水对汽艇运动的阻力与汽艇运动的速度成正比,并已知在关闭其动力后20(s)汽艇的速度降为了10.8(km/h).试问它最多能滑行多远?
设平面区域D由直线及两条坐标轴所围成.记则有()
设n阶矩阵A≠O,存在某正整数m,使Am=O,证明:A必不相似于对角矩阵.
随机试题
患者,女性,39岁,已婚,体检时乳腺B超示左乳外上有1.5cm×1.5cm实性包块,入院治疗。入院后入睡困难,易觉醒。引起病人睡眠不佳的主要原因是
下列关于热拌沥青混合料路面施工准备的说法中错误的是()。
下列关于保险人的经营业务范围说法不正确的是( )。
下列有关城镇土地使用税的表述中,正确的是()。
下列说法正确的是()。
下列属于法的创制的有哪些?()
1/2
采用SMTP协议和POP协议的服务器功能都是通过Internet实现邮件通信,它们在功能上的区别是(32)。
相对于其它处理器,ARM处理器主要技术特征,以下说法错误的是()。
关于函数,以下选项中描述错误的是
最新回复
(
0
)