设函数y=y(x)由e2x+y-cosxy=e-1确定,则曲线y=y(x)在x=0对应点处的法线方程为__________.

admin2022-06-30  56

问题 设函数y=y(x)由e2x+y-cosxy=e-1确定,则曲线y=y(x)在x=0对应点处的法线方程为__________.

选项

答案y=1/2x+1

解析 当x=0时,y=1,
    e2x+y-cosxy=e-1两边对x求导得+sin(xy)
    将x=0,y=1代入得
    故所求法线方程为y-1=1/2(x-0),即y=1/2x+1.
转载请注明原文地址:https://kaotiyun.com/show/XLf4777K
0

最新回复(0)