首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续且严格单调增加,证明:(a+b)∫abf(x)dx<2∫abxf(x)bx.
设f(x)在[a,b]上连续且严格单调增加,证明:(a+b)∫abf(x)dx<2∫abxf(x)bx.
admin
2015-08-14
46
问题
设f(x)在[a,b]上连续且严格单调增加,证明:(a+b)∫
a
b
f(x)dx<2∫
a
b
xf(x)bx.
选项
答案
令F(t)=(a+t)∫
a
t
dx一2∫
a
t
xf(x)dx,则 F’(t)=∫
a
t
f(x)dx+(a+t)f(t)一2tf(t) =∫
a
t
f(x)dx一(t-a)f(t)=∫
a
t
f(x)dx-∫
a
t
f(t)dx =∫
a
t
[f(x)—f(t)]dx. 因为a≤x≤t,且f(x)在[a,b]上严格单调增加,所以f(x)一f(t)≤0,于是有 F’(t)=∫
a
t
[f(x)一f(t)]dx≤0, 即F(t)单调递减,又F(a)=0,所以F(b)<0,即 (a+b)∫
a
b
f(x)dx一2∫
a
b
xf(x)dx<0, 即(a+b)∫
a
b
f(x)dx<2∫
a
b
xf(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/XM34777K
0
考研数学二
相关试题推荐
设A=求A的特征值与特征向量,并判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设y=f(x)=,(Ⅰ)讨论f(x)在x=0处的连续性;(Ⅱ)求f(x)的极值点与极值。
下列广义积分收敛的是()
设二维随机变量(x,y)的联合密度函数为f(x,y)=则k为().
已知抛物线y=px2+qx(其中p<0,q>0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S.(Ⅰ)问p和q何值时,S达到最大值?(Ⅱ)求出此最大值.
设f(x)在x=0处具有二阶连续导数,且已知,试求f(0),f'(0),f"(0)及极限。
当x→0时,f(x)与x2是等价无穷小,其中f(x)连续,f(t)dt与xn是同阶无穷小,则n=()
下列积分发散的是()
用恒等变形法或提公因式法化简极限函数,再用等价无穷小代换求出结果.[*]
随机试题
糖尿病肾病的特点是()(1995年)
患者女,36岁。患贫血患者,外周血检查结果:RBC3.50×109/L,网织红细胞百分率15%。如采用Miller窥盘计数网织红细胞时,计数10个视野小方格中的红细胞总数为120个,则计数到大方格中的网织红细胞总数应为
药物临床试验必须符合
氟喹诺酮类药物抗菌作用机制是
A.吗啡B.沙丁胺醇C.苯甲酸D.白消安E.对氨基水杨酸可与谷胱甘肽结合生成氢化噻吩的是()。
某工程,业主在招标文件中规定:工期T(周)不得超过80周,也不应短于60周。某施正单位决定参与该工程的投标。在基本确定了技术方案后,为提高竞争能力,对其中某技术措施拟定了3个方案进行比选。方案一的费用为C1=100+4T;方案二的费用为C2=150+3T
新罗初期派遣的留唐学生选自
甲家的牛丢失后被乙拾得,甲要求乙返还该牛,乙提出了下列请求,依法应予支持的是( )。
以下关于离婚与撤销婚姻的区别的表述,正确的是()
数据库管理系统(DBMS)是一种
最新回复
(
0
)