首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方程组(Ⅰ):α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解, 其中,r(B)=2. (1)求方程组(Ⅰ)的基础解系; (2)求方程组(Ⅱ):BX=0的基础解系; (3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设方程组(Ⅰ):α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解, 其中,r(B)=2. (1)求方程组(Ⅰ)的基础解系; (2)求方程组(Ⅱ):BX=0的基础解系; (3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
admin
2022-04-02
122
问题
设方程组(Ⅰ):
α
1
,α
2
,α
3
,α
4
为四元非齐次线性方程组BX=b的四个解,
其中
,r(B)=2.
(1)求方程组(Ⅰ)的基础解系;
(2)求方程组(Ⅱ):BX=0的基础解系;
(3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
选项
答案
(1)方程组(Ⅰ)的基础解系为ξ
1
=[*] (2)因为r(B)=2,所以方程组(Ⅱ)的基础解系含有两个线性无关的解向量, α
4
-α
1
=[*],α
2
+α
3
-2α
1
=[*]为方程组(Ⅱ)的基础解系; (3)方程组(Ⅰ)的通解为k
1
ξ
1
+k
2
ξ
2
=[*] 取k
2
=k,则方程组(Ⅰ)与方程组(Ⅱ)的公共解为k(-1,1,1,1)
T
(其中k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/61R4777K
0
考研数学三
相关试题推荐
设向量组(I)α1,α2,…,αn,其秩为r1,向量组(Ⅱ)β1,β2,…,βn,其秩为r2,且βi(i=l,2,…,s)均可以由α1,…α1线性表示,则().
设A,B为三阶相似矩阵,且|2E+A|=0,λ1=1,λ2=-1为B的两个特征值,则行列式|A+2AB|=________。
没向量组(I):a1,a2,…,an(Ⅱ):a1,a2,…,an-1则必有().
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设曲线y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周,得一旋转体,求此旋转体体积V(ξ);求满足(2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出该面积.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,满足aTβ=0,记n阶矩阵A=αβT.求A的特征值和特征向量.
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)的系数矩阵为(Ⅱ)的一个基础解系为η1=(2,一1,a+2,1)T,η2=(一1,2,4,a+8)T.(1)求(I)的一个基础解系;(2)a为什么值时(I)和(Ⅱ)有公共非零解?此时求出全部公共非零解
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数。试利用中心极限定理估计:试当n=1500时求舍位误差之和的绝对值大于15的概率;
已知下列非齐次线性方程组:求解方程组(I),用其导出组的基础解系表示其通解;
随机试题
运用唯物辩证法研究政治经济学,必须坚持的原则是________、________
患者,女,38岁,初产妇。因胎动明显减少1天入院。检查:血压95/65mmHg,脉率110次/min,胎膜已破,胎儿左枕前位,头先露S+2,胎心率100次/min。胎心检测提示多个晚期减速,子宫体压痛,宫口开大3cm。询问病史了解到:24小时前有大量清亮液
患者男性,47岁。昨晚饮白酒400ml后出现呕血来院急诊。既往无溃疡、肝病史。查体:血压100/60mmHg,脉搏95次/分,肝、脾未触及。患者出血的原因最可能是
任意一台消防联动控制器地址总数或火灾报警控制器(联动型)所控制的各类模块总数不应超过()。
甲公司向乙公司购入一批原材料,价值20万元,双方约定使用转账支票进行结算。于是甲公司出纳王某向乙公司签发了一张20万元的转账支票,王某在签发支票时使用普通的蓝色水笔填写,并且没有签章。乙公司将20万元的转账支票交给银行,银行认为此出票行为不合法,不予转账。
在中国境内的外商投资企业,会计记录文字符合规定的是()。
2003年7月26日在中国上海举办国际家电博览会,法国胜龙家用电器有限公司应邀参加展览。该公司在参展前向本国相关机构申领了一份《ATA单证册》,装运货物的运输工具于7月5日进境,7月6日该货物的收货人持《ATA单证册》向上海海关办理了货物申报。根据上述
A、 B、 C、 A图中为三个不同的场景或地点,因此考查的应当是地点。句中直接提到了No.1MiddleSchool,因此答案是[A]。
Ofallthedepressingstatisticsaboutalifetimeofconsumerexistence,thismaybethemostdistressing:eachofusisdestine
Manycountriesneedtodomoretooffereducationandtrainingforpeopleofallages.SosaysanewreportfromtheOrganizatio
最新回复
(
0
)