首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方程组(Ⅰ):α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解, 其中,r(B)=2. (1)求方程组(Ⅰ)的基础解系; (2)求方程组(Ⅱ):BX=0的基础解系; (3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设方程组(Ⅰ):α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解, 其中,r(B)=2. (1)求方程组(Ⅰ)的基础解系; (2)求方程组(Ⅱ):BX=0的基础解系; (3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
admin
2022-04-02
72
问题
设方程组(Ⅰ):
α
1
,α
2
,α
3
,α
4
为四元非齐次线性方程组BX=b的四个解,
其中
,r(B)=2.
(1)求方程组(Ⅰ)的基础解系;
(2)求方程组(Ⅱ):BX=0的基础解系;
(3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
选项
答案
(1)方程组(Ⅰ)的基础解系为ξ
1
=[*] (2)因为r(B)=2,所以方程组(Ⅱ)的基础解系含有两个线性无关的解向量, α
4
-α
1
=[*],α
2
+α
3
-2α
1
=[*]为方程组(Ⅱ)的基础解系; (3)方程组(Ⅰ)的通解为k
1
ξ
1
+k
2
ξ
2
=[*] 取k
2
=k,则方程组(Ⅰ)与方程组(Ⅱ)的公共解为k(-1,1,1,1)
T
(其中k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/61R4777K
0
考研数学三
相关试题推荐
设向量组(I)α1,α2,…,αn,其秩为r1,向量组(Ⅱ)β1,β2,…,βn,其秩为r2,且βi(i=l,2,…,s)均可以由α1,…α1线性表示,则().
设f(x)在[0,2]上连续,在(0,2)内三阶可导,且.证明:存在ξ∈(0,2),使得f’’’(ξ)=9.
设三角形三边的长分别为a,b,c,此三角形的面积设为S.求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本,证明:都是参数θ的无偏估计量,试比较其有效性.
某企业生产某种商品的成本函数为C=a+bQ+cQ2,收入函数为R=lQ一sQ2,其中常数a,b,c,l,s都是正常数,Q为销售量,求:(I)当每件商品的征税额为t时,该企业获得最大利润时的销售量;(Ⅱ)当企业利润最大时,t为何值时征税收益最大.
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
为了研究施肥和不施肥对某种农作物产量的影响,独立地选了十三个小区在其他条件相同的情况下进行对比试验,得收获量如下表:设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.975(11)=2.2
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数。试利用中心极限定理估计:估计数据个数n满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数规.
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数。试利用中心极限定理估计:试当n=1500时求舍位误差之和的绝对值大于15的概率;
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY,化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
随机试题
非正式的刑法解释
潜水员过快地从海底升到水面容易发生
在下列四个选项中,说法不正确的是()。
费用索赔中,承包商的索赔可以分为损失索赔和()索赔。
山东省发展旅游业基本原则主要内容是()
据海关统计,2010年1~10月份,广东省对东盟的进出口贸易总值为649.1亿美元,比去年同期(下同)增长31.3%,占同期广东省进出口贸易总值的8%。其中,对东盟出253.5亿美元,增长20.8%:自东盟进口395.6亿美元,增长39%。2
下列选项中,不属于我国《宪法》规定的公民基本权利的是()。
许多电视观众根据电视新闻的报道力度来估计一种类型的事故或犯罪的发生率。电视新闻对于那些包含刺激性画面的事故,如火灾、摩托车事故的报道多于那些有极少视觉刺激的普通事件,如对做假账的报道。如果上述陈述都是真的,那么以下哪项最有可能是真的?
根据ISO7498-4文件定义的网络管理系统的功能域,下列属于网络管理系统的功能的有几项? Ⅰ.配置管理 Ⅱ.故障管理 Ⅲ.性能管理 Ⅳ.网络管管 Ⅴ.计费管理 Ⅵ.安全管理
【61】【62】
最新回复
(
0
)