首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(I)α1,α2,…,αm-1线性表示,记向量组(Ⅱ)α1,α2,…,αm-1,β,则( ).
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(I)α1,α2,…,αm-1线性表示,记向量组(Ⅱ)α1,α2,…,αm-1,β,则( ).
admin
2019-07-01
23
问题
设向量β可由向量组α
1
,α
2
,…,α
m
线性表示,但不能由向量组(I)α
1
,α
2
,…,α
m-1
线性表示,记向量组(Ⅱ)α
1
,α
2
,…,α
m-1
,β,则( ).
选项
A、α
m
不能由(I)线性表示,也不能由(Ⅱ)线性表示
B、α
m
不能由(I)线性表示,但可能由(Ⅱ)线性表示
C、α
m
可由(I)线性表示,也可由(Ⅱ)线性表示
D、α
m
可由(I)线性表示,但不可由(Ⅱ)线性表示
答案
B
解析
转载请注明原文地址:https://kaotiyun.com/show/XUc4777K
0
考研数学一
相关试题推荐
已知齐次线性方程组=有非零解,且矩阵A=是正定矩阵.求当XTX=2时,XTAX的最大值,其中X=(x1,x2,x3)T∈R3.
设λ1,λ2分别为n阶实对称矩阵A的最小和最大特征值,X1、X2分别为对应于λ1和λn的特征向量,记f(X)=,X∈Rn,X≠0证明:λ1≤f(X)≤λ,,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
设S是平面x+y+z=4被圆柱面x2+y2=1截出的有限部分,则曲面积分的值是
一批矿砂的4个样品中镍含量测定为(%):3.25,3.26.3.24.3.25.设测定值总体服从正态分布。问在α=0.01下能否接受假设:这批矿砂镍含量的均值为3.26.(t0.975(3)=5.8409,下侧分位数).
设二维随机变量(X,Y)的分布函数为:F(χ,y)=A(B+arctan)(C+arctan),-∞<χ<+∞,-∞<y<+∞.求:(1)常数A,B,C;(2)(X,Y)的概率密度f(χ,Y);(3)关于X和Y的边缘
(1)设函数f(x)具有一阶连续导数,且f(1)=1,D为不包含原点的单连通区域,在D内曲线积分与路径无关,求f(y);(2)在(1)的条件下,求a>0,且取逆时针方向.
已知对于N阶方阵A,存在自然数k,使得Ak=0.证明矩阵E-A可逆,并写出其逆矩阵的表达式(E为n阶单位矩阵).
如图1.3一1所示,设曲线方程为y=x2+,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0,证明:
比较下列积分值的大小:(Ⅰ)I1=[sin(x+y)]3dxdy,其中D由x=0,y=0,x+y=,x+y=1围成,则I1,I2,I3之间的大小顺序为
设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n一2,n是未知数个数,则()正确.
随机试题
霍奇金病最重要的具有诊断意义的病变是
在财产保险合同中,因第三者对保险标的损害而造成保险事故,被保险人的以下四种索赔方法中,不符合《保险法》规定的是()。
在可行性研究阶段,市场调查的主要内容包括市场需求调查、竞争者调查、消费调查和()。
下列不属于敏感性训练目的的是()。
最近发展区理论的创始人是()。
1447年,邓茂七自称(),发动起义。随后,占领沙县,建立了农民政权。
ThesearetoughtimesforWal-Mart,America’sbiggestretailer.Longaccusedof(1)_____small-townAmericamadcondemnedforth
IfIgetuptoolate,mymotherwillbeangry______me.
W:Howdidyourinterviewgo?M:______
Inrecentdecadeschildspecialistshavetriedmoreandmoretohelpparentswiththeirchildren’sschoolbehavior,Schoolsofe
最新回复
(
0
)