首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 已知二次型 f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1,x2的秩为2. 求正交变换X=QY,把f(x1,x2,x3)化成标准形;
[2005年] 已知二次型 f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1,x2的秩为2. 求正交变换X=QY,把f(x1,x2,x3)化成标准形;
admin
2021-01-19
65
问题
[2005年] 已知二次型
f(x
1
,x
2
,x
3
)=(1一a)x
1
2
+(1一a)x
2
2
+2x
3
2
+2(1+a)x
1
,x
2
的秩为2.
求正交变换X=QY,把f(x
1
,x
2
,x
3
)化成标准形;
选项
答案
由A=[*]得到其特征方程为 ∣λE—A∣=[*]=λ(λ一2)
2
=0, 因而其特征值为λ
1
=λ
2
=2,λ
3
=0.解(λE—A)X=0.由 λ
1
E一A=[*] 知,属于λ
1
=λ
2
=2的特征向量为α
1
=[1,1,0]
T
,α
2
=[0,0,l]
T
.解(λ
3
E—A)X=0.由 λ
3
E一A=[*] 知,属于λ
2
=0的特征向量为α
3
=[1,一1,0]
T
.由于α
1
,α
2
已正交,且α
3
又必与α
1
,α
2
正交, 故α
1
,α
2
,α
3
已是正交向量组,只需单位化,得到 η
1
=[1/√2,1/√2,0]
T
,η
2
=[0,0,1]
T
,η
3
=[1/√2,一1/√2,0]
T
令Q=[η
1
,η
2
,η
3
],则X=QY为所求的正交变换,二次型f在此变换下,化为标准形 f(x
1
,x
2
,x
3
)=λ
1
y
1
2
+λ
2
y
2
2
+λ
3
y
3
2
=2y
1
2
+2y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/XV84777K
0
考研数学二
相关试题推荐
把二重积分f(x,y)dxdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
设A为n阶可逆矩阵,A*为A的伴随矩阵。证明(A*)T=(AT)*。
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向x轴负向无限伸展的平面图形记为D.求(Ⅰ)D的面积A;(Ⅱ)D绕直线x=1旋转一周所成的旋转体的体积V.
设A是m×n矩阵,r(A)=n,则下列结论不正确的是().
设A是n阶矩阵,且A的行列式|A|=0,则A().
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0).试证明:对任意:f’(x)都存在,并求f(x).
设行列式D=,则第4行各元素余子式之和的值为_______。
设二次型2χ12+χ22+χ32+2χ1χ2+aχ2χ3的秩为2,则a=_______.
设f(x1,x2)=,则二次型的对应矩阵是_________。
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间(,1)内有且仅有一个实根;(2)记上题中的实根为xn,证明xn存在,并求此极限。[img][/img]
随机试题
目眦色赤,多属
老年人胸痛应多考虑
在意外事故现场,对受难者诊断是否心搏停止,最迅速有效的方法是
在FIDIC系列合同文件中,《EPC/交钥匙项目合同条件》的合同计价采用()方式。
简述幼儿判断的特点。
A.0mmB.0.5mmC.1.0mmD.1.5mmE.2.0mm上颌侧切牙离开平面()。
试求正数λ的值,使得曲面xyz=λ与曲面在某一点相切.
设A,B均为n阶矩阵,且AB=A+B,则(1)若A可逆,则B可逆(2)若B可逆,则A+B可逆(3)若A+B可逆,则AB可逆(4)A—E恒可逆上述命题中,正确的命题共有()
DebateaboutproposalstoraisetheretirementageofChineseworkershasbeenraginginChinaforthepastfewyears.Thecompu
TheUnitedStatesbecamearichindustrialnationtowardtheendofthe1800s.Thereweremoregoods,moreservices,morejobs,
最新回复
(
0
)