首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在区间[0,1]上可导,f(1)=2χ2f(χ)dχ.证明:存在ξ∈(0,1),使得2f(ξ)+ξf′(ξ)=0.
设f(χ)在区间[0,1]上可导,f(1)=2χ2f(χ)dχ.证明:存在ξ∈(0,1),使得2f(ξ)+ξf′(ξ)=0.
admin
2019-06-28
106
问题
设f(χ)在区间[0,1]上可导,f(1)=2
χ
2
f(χ)dχ.证明:存在ξ∈(0,1),使得2f(ξ)+ξf′(ξ)=0.
选项
答案
令φ(χ)=χ
2
f(χ),由积分中值定理得f(1)=2[*]χ
2
f(χ)dχ=c
2
f(c),其中c∈[0,[*]],即φ(c)=φ(1),显然φ(χ)在区间[0,1]上可导,由罗尔中值定理,存在ξ∈(c,1)[*](0,1),使得φ′(ξ)=0.而φ′(χ)=2χf(χ)+χ2
2
f′(χ),所以2ξf(ξ)+ξ
2
f′(ξ)=0,注意到ξ≠0,故2f(ξ)+ξf′(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/wdV4777K
0
考研数学二
相关试题推荐
已知m个向量α1,…,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则,其中l1≠0。
已知m个向量α1,…,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT。求矩阵A的特征值和特征向量。
设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为________
曲线在(0,0)处的切线方程为__________。
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。证明:r(A)=2;
甲乙两人赛跑,计时开始时,甲在乙前方10(单位:米)处,图中实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分的面积的数值依次为10,20,3。计时开始后乙追上甲的时刻记为t0(单位:s),则()
设y(x)是区间(0,3/2)内的可导函数,且y(1)=0,点P是曲线l:y(x)上的任意一点。l在P处的切线与y轴相交于点(0,Yp),法线与x轴相交于点(Xp,0),若Xp=Yp,求l上点的坐标(x,y)满足的方程。
求极限:
随机试题
Childrenmodelthemselveslargelyontheirparents.Theydosomainlythroughidentification.Childrenidentify【C1】______aparen
女性,46岁,20年前分娩时曾有过1次癫痫发作史。之后每年仅发作1~2次,因此未坚持规律服药。今日下班回家途中突然意识丧失,四肢抽搐,牙关紧闭,心率增快,血压升高,瞳孔散大。持续20秒后,肌肉开始出现强直和松弛交替。护士应该立即为患者提供的护理措施中,
下列影响藻酸盐印模材料凝固时间的因素除了
A.B超检查B.脑脊液检查C.脑电图D.免疫学检查E.CT和MRI可显示椎间盘突出程度的检查是
人体铁的吸收部位主要在
戊二醛浸泡消毒各种内镜的浓度是
下列循环经济评价指标中,属于宏观层面评价指标的是()。
心理咨询师在咨询中使用的提问方式不包括()。求助者的情感症状不包括()。
下列关于“中心法则(如图2)”含义的叙述,错误的是()。
Writeacompositionofabout120wordsreferringtothefollowingoutline:OnDevelopingSpeakingAbilityO
最新回复
(
0
)