首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在区间[0,1]上可导,f(1)=2χ2f(χ)dχ.证明:存在ξ∈(0,1),使得2f(ξ)+ξf′(ξ)=0.
设f(χ)在区间[0,1]上可导,f(1)=2χ2f(χ)dχ.证明:存在ξ∈(0,1),使得2f(ξ)+ξf′(ξ)=0.
admin
2019-06-28
108
问题
设f(χ)在区间[0,1]上可导,f(1)=2
χ
2
f(χ)dχ.证明:存在ξ∈(0,1),使得2f(ξ)+ξf′(ξ)=0.
选项
答案
令φ(χ)=χ
2
f(χ),由积分中值定理得f(1)=2[*]χ
2
f(χ)dχ=c
2
f(c),其中c∈[0,[*]],即φ(c)=φ(1),显然φ(χ)在区间[0,1]上可导,由罗尔中值定理,存在ξ∈(c,1)[*](0,1),使得φ′(ξ)=0.而φ′(χ)=2χf(χ)+χ2
2
f′(χ),所以2ξf(ξ)+ξ
2
f′(ξ)=0,注意到ξ≠0,故2f(ξ)+ξf′(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/wdV4777K
0
考研数学二
相关试题推荐
设向量α1,α2,…,αn-1是n一1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:α1,α2,…,αn-1ξ1线性无关。
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
设A,B为同阶方阵。若A,B相似,证明A,B的特征多项式相等;
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。求可逆矩阵尸使得P-1AP=A。
设x为三维单位列向量,E为三阶单位矩阵,则矩阵E—xxT的秩为_________。
设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为________
曲线在(0,0)处的切线方程为__________。
设n元线性方程组Ax=b,其中证明行列式|A|=(n+1)an;
设函数f(x)=lnx+(Ⅰ)求f(x)的最小值;(Ⅱ)设数列{xn}满足lnxn+<1,证明xn存在,并求此极限。
随机试题
马克思主义理论研究和建设工程重点教材《毛泽东思想和中国特色社会主义理论体系概论》(2018版)的主线是()
将许多过于狭小的子市场组合起来,以便能以较低的成本和价格去满足这一市场的需求。这种市场细分战略称作()
位于肺动脉与主动脉弓之间的动脉导管,生后闭锁成为动脉韧带。()
以下哪穴不是足阳明胃经的五输穴
具有消痈排脓,祛瘀止痛功效的药物是
会计人员参与企业管理主要体现在()。
持股集中度越高,基金的风险越小。()
青霉素过敏性休克在抢救时首先应采取的措施是()。
已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,前n项和Sn取得最大值时n的值是().
数据库系统的核心是
最新回复
(
0
)