首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组Ax=0. (Ⅰ)如A中每行元素之和均为0,且r(A)=n一1,则方程组的通解是___________; (Ⅱ)如每个n维向量都是方程组的解,则r(A)=___________; (Ⅲ)如r(A)=n一1,且代数余子式A1
设A是n阶矩阵,对于齐次线性方程组Ax=0. (Ⅰ)如A中每行元素之和均为0,且r(A)=n一1,则方程组的通解是___________; (Ⅱ)如每个n维向量都是方程组的解,则r(A)=___________; (Ⅲ)如r(A)=n一1,且代数余子式A1
admin
2020-03-10
37
问题
设A是n阶矩阵,对于齐次线性方程组Ax=0.
(Ⅰ)如A中每行元素之和均为0,且r(A)=n一1,则方程组的通解是___________;
(Ⅱ)如每个n维向量都是方程组的解,则r(A)=___________;
(Ⅲ)如r(A)=n一1,且代数余子式A
11
≠0,则Ax=0的通解是_________,A
*
x=0的通解是__________,(A
*
)
*
x=0的通解是___________.
选项
答案
(Ⅰ)k(1,1,…,1)
T
. (Ⅱ)0 (Ⅲ)k(A
11
,A
12
,…,A
1n
)
T
k
1
e
1
+k
2
e
2
+…+k
n
e
n
k[*]
解析
(Ⅰ)从r(A)=n一1知Ax=0的基础解系由1个解向量组成,因此任一非零解都可成为基础解系.因为每行元素之和都为0,有
a
i1
+a
i2
+…+a
in
=1.a
i1
+1.a
i2
+…+1.a
in
=0,
所以,(1,1,…,1)
T
满足每一个方程,是Ax=0的解,故通解是k(1,1,…,1)
T
.
(Ⅱ)每个n维向量都是解,因而有n个线性无关的解,那么解空间的维数是n,又因解空间维数是n—r(A),故n=n—r(A),即 r(A)=0.
(Ⅲ)对Ax=0,从r(A)=n一1知基础解系由1个解向量所构成.因为AA
*
=|A|E=0,A
*
的每一列都是Ax=0的解.现已知A
11
≠0,故(A
11
,A
12
,…,A
1n
)
T
是Ax=0非零解,即是基础解系,所以通解是k(A
11
,A
12
,…,A
1n
)
T
.
对A
*
x=0,从r(A)=n一1知r(A
*
)=1,那么A
*
x=0的基础解系由n—r(A
*
)=n一1个向量所构成,从A
*
A=0知A的每一列都是A
*
x=0的解,由于代数余子式A
11
≠0,知,n一1维向量
(a
22
,a
32
,…,a
n2
)
T
,(a
22
,a
33
,…,a
n3
)
T
,…,(a
2n
,a
3n
,…,a
nn
)
T
线性无关,那么延伸为n维向量
(a
12
,a
22
,…,a
n2
)
T
,(a
13
,a
23
,…,a
n3
)
T
,…,(a
1n
,a
2n
,…,a
nn
)
T
仍线性无关,即是A
*
x=0的基础解系,.
对(A
*
)
*
x=0,同上知r(A
*
)=1,已知当n≥3时,r((A
*
)
*
)=0,那么任意n个线性无关的向量都可构成基础解系.例如,取
e
1
=(1,0,…,0)
T
,e
2
=(0,1,…,0)
T
,…,e
n
=(0,0,…,1)
T
,得通解k
1
e
1
+k
2
e
2
+…+k
n
e
n
.
如n=2,对于A=
=A.
那么(A
*
)
*
x=0的通解是k
(注:AA
*
=0,A
11
=a
22
≠0,r(A)=1).
转载请注明原文地址:https://kaotiyun.com/show/XYS4777K
0
考研数学一
相关试题推荐
已知总体X的概率密度f(x)=(λ>0),X1,…,Xn为来自总体X的简单随机样本,Y=X2.(I)求Y的期望EY(记EY为b);(Ⅱ)求λ的矩估计量和最大似然估计量(Ⅲ)利用上述结果求b的最大似然估计量.
设函数f(x)连续,且f(0)≠0,求极限。
已知x1,x2,…,x10是取自正态总体N(μ,1)的10个观测值,统计假设为H0:μ=μ0=0;H1:μ≠0.(I)如果检验的显著性水平α=0.05,且拒绝域R=,求k的值;(Ⅱ)若已知,是否可以据此样本推断μ=0(α=0.05)?(Ⅲ)
设随机变量X的概率密度为f(x),已知方差DX=1,而随机变量y的概率密度为f(-y),且X与Y的相关系数为记Z=X+Y.求EZ,DZ;
现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球.(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.
设随机变量X服从参数为2的指数分布,证明:Y=1一e-2X在区间(0,1)上服从均匀分布.
设{un}是单调增加的有界数列,则下列级数中收敛的是()
[2001年]设随机变量X的方差为2,则根据切比雪夫不等式估计P(|X—E(X)|≥2)≤______.
[2004年]设有方程xn+nx一1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当α>1时,级数xnα收敛.
使不等式>lnx成立的x的范围是()
随机试题
鉴定果实类中药,应注意其形状、大小、颜色、顶端、基部、表面、质地、断面及气味等。种子类中药的性状鉴定主要应注意种子的形状、大小、颜色、表面纹理、种脐、合点和种脊的位置及形态、质地、纵横剖面以及气味等。表面黄绿色或淡黄色,分果呈长椭圆形,背面有纵棱5条的
思维的两大特点是指()
男性,72岁,慢性胃炎30年,近2周出现发作性胸痛,伴反酸,烧心,呃逆,进食发堵。若上述两题检查正常进一步做哪项检查
根据《药品经营质量管理规范实施细则》,药品零售企业制定的质量管理制度必须包括
患儿,10个月,呕吐、腹泻3天。查体:口腔黏膜干燥,皮肤弹性差,尿量明显减少,血清钠135mmol/L,考虑为
背景材料:某施工单位负责南方在建石油化工装置的管道安装工程、设备安装工程的施工。由于中标时间距工程的开工时间很短,所以该施工单位在工程开工后,才完成施工组织设计的编制工作。施工过程中,建设单位对该施工单位的施工质量很满意,将装置内的保温工程、防火工程也交
《税收征收管理法》规定,纳税人未按规定期限办理纳税申报和报送纳税资料,情节严重的,可以处以()的罚款。
()又称为营运能力比率,体现管理层管理和控制资产的能力。
某市兴达房地产开发公司2018年开发一个项目,有关经营情况如下:(1)购买土地支付价款750万元,并按规定缴纳相关费用及契税共62.5万元,2018年占用该土地面积的80%开发写字楼,写字楼面积共40000平方米。(2)开发过程中发生拆
设栈的顺序存储空间为S(1:m),初始状态为top=m+1。经过一系列入栈与出栈操作后,top=m。现又在栈中退出一个元素后,栈顶指针top值为()。
最新回复
(
0
)