首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,对于齐次线性方程组Ax=0. (Ⅰ)如A中每行元素之和均为0,且r(A)=n一1,则方程组的通解是___________; (Ⅱ)如每个n维向量都是方程组的解,则r(A)=___________; (Ⅲ)如r(A)=n一1,且代数余子式A1
设A是n阶矩阵,对于齐次线性方程组Ax=0. (Ⅰ)如A中每行元素之和均为0,且r(A)=n一1,则方程组的通解是___________; (Ⅱ)如每个n维向量都是方程组的解,则r(A)=___________; (Ⅲ)如r(A)=n一1,且代数余子式A1
admin
2020-03-10
20
问题
设A是n阶矩阵,对于齐次线性方程组Ax=0.
(Ⅰ)如A中每行元素之和均为0,且r(A)=n一1,则方程组的通解是___________;
(Ⅱ)如每个n维向量都是方程组的解,则r(A)=___________;
(Ⅲ)如r(A)=n一1,且代数余子式A
11
≠0,则Ax=0的通解是_________,A
*
x=0的通解是__________,(A
*
)
*
x=0的通解是___________.
选项
答案
(Ⅰ)k(1,1,…,1)
T
. (Ⅱ)0 (Ⅲ)k(A
11
,A
12
,…,A
1n
)
T
k
1
e
1
+k
2
e
2
+…+k
n
e
n
k[*]
解析
(Ⅰ)从r(A)=n一1知Ax=0的基础解系由1个解向量组成,因此任一非零解都可成为基础解系.因为每行元素之和都为0,有
a
i1
+a
i2
+…+a
in
=1.a
i1
+1.a
i2
+…+1.a
in
=0,
所以,(1,1,…,1)
T
满足每一个方程,是Ax=0的解,故通解是k(1,1,…,1)
T
.
(Ⅱ)每个n维向量都是解,因而有n个线性无关的解,那么解空间的维数是n,又因解空间维数是n—r(A),故n=n—r(A),即 r(A)=0.
(Ⅲ)对Ax=0,从r(A)=n一1知基础解系由1个解向量所构成.因为AA
*
=|A|E=0,A
*
的每一列都是Ax=0的解.现已知A
11
≠0,故(A
11
,A
12
,…,A
1n
)
T
是Ax=0非零解,即是基础解系,所以通解是k(A
11
,A
12
,…,A
1n
)
T
.
对A
*
x=0,从r(A)=n一1知r(A
*
)=1,那么A
*
x=0的基础解系由n—r(A
*
)=n一1个向量所构成,从A
*
A=0知A的每一列都是A
*
x=0的解,由于代数余子式A
11
≠0,知,n一1维向量
(a
22
,a
32
,…,a
n2
)
T
,(a
22
,a
33
,…,a
n3
)
T
,…,(a
2n
,a
3n
,…,a
nn
)
T
线性无关,那么延伸为n维向量
(a
12
,a
22
,…,a
n2
)
T
,(a
13
,a
23
,…,a
n3
)
T
,…,(a
1n
,a
2n
,…,a
nn
)
T
仍线性无关,即是A
*
x=0的基础解系,.
对(A
*
)
*
x=0,同上知r(A
*
)=1,已知当n≥3时,r((A
*
)
*
)=0,那么任意n个线性无关的向量都可构成基础解系.例如,取
e
1
=(1,0,…,0)
T
,e
2
=(0,1,…,0)
T
,…,e
n
=(0,0,…,1)
T
,得通解k
1
e
1
+k
2
e
2
+…+k
n
e
n
.
如n=2,对于A=
=A.
那么(A
*
)
*
x=0的通解是k
(注:AA
*
=0,A
11
=a
22
≠0,r(A)=1).
转载请注明原文地址:https://kaotiyun.com/show/XYS4777K
0
考研数学一
相关试题推荐
设f(x)对一切x1,x2满足f(x1+x2)-f(x1)+f(x2),并且f(x)在x=0处连续.证明:函数f(x)在任意点x0处连续.
设总体X的概率密度为其中参数λ(λ>0)未知,X1,X2,…,Xn是来自总体X的简单随机样本。求参数λ的矩估计量。
设矩阵A与B相似,且A=。求可逆矩阵P,使P-1AP=B。
(2012年)已知L是第一象限中从点(0,0)沿圆周x2+y2=2x到点(2,0),再沿圆周x2+y2=4到点(0,2)的曲线段,计算曲线积分
(93年)求微分方程x2y’+xy=y2满足初始条件y|x=1=1的特解.
(15年)已知函数f(x,y)=x+y+xy,曲线C:x2+y2+xy=3,求f(x,y)在曲线C上的最大方向导数.
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一解,并求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并求通解。
假设总体X服从标准正态分布,X1,X2,…,Xn是来自总体X的简单随机样本,则统计量Y1=都服从__________分布,且其分布参数分别为__________和__________。
设总体X服从正态分布N(μ1,σ2),总体Y服从正态分布N(μ2,σ2),X1,X2,…,Xn1和Y1,Y2,…,Yn2分别是来自总体X和Y的简单随机样本,则E=__________。
(2012年)设函数_f(x)=(ex一1)(e2x一2)…(enx一n),其中n为正整数,则f’(0)=
随机试题
下列何药可控制疟疾的复发和传播:
肺脏的常规摄影体位是
患者,男,45岁。咳嗽、咳痰5年,近3年每年持续咳嗽、咳痰3~4个月。肺部X线检查仅见肺纹理增粗。其诊断是
男性,40岁,因门静脉高压症食管胃底静脉曲张出血,已行脾切除,贲门周围血管离断术1年,近2天来又有黑粪,每日4次,糊状,量每次150ml左右,血红蛋白80g/L/血压90/60mmHg,应首先考虑作何种检查
如图4-82所示振动系统中m=200kg,弹簧刚度k=10000N/m,设地面振动可表示为y=0.1sin(10t)(y以cm、t以s计)。则()。
一般来说,中国城市空间结构中最重要的是()等三部分。
下列经济活动中,引起资产和负债同时减少的是()。
提供虚假财会报告罪,是指公司向股东和社会公众提供虚假的或者隐瞒重要事实的财务会计报告,严重损害股东或者其他人利益的行为。以下选项符合提供虚假财会报告罪的是()。
Words______meaning,asweallknow.
(1)He’sonly11monthsold,butCharlieGardcommandsanarmyoftheimpassionedthatnumbersinthehundredsofthousandsand
最新回复
(
0
)