首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的伴随矩阵为A*,证明: (Ⅰ)若|A|=0,则|A*|=0; (Ⅱ)|A*|=|A|n-1。
设n阶矩阵A的伴随矩阵为A*,证明: (Ⅰ)若|A|=0,则|A*|=0; (Ⅱ)|A*|=|A|n-1。
admin
2018-01-26
72
问题
设n阶矩阵A的伴随矩阵为A
*
,证明:
(Ⅰ)若|A|=0,则|A
*
|=0;
(Ⅱ)|A
*
|=|A|
n-1
。
选项
答案
(Ⅰ)(反证法)假设|A
*
|≠0,由矩阵可逆的充分必要条件可知A
*
是可逆矩阵,则有 A
*
(A
*
)-=E,因为由A
-1
=[*]A
*
,可知A
*
=A
-1
|A|,由此得 A=AE=AA
*
(A
*
)
-1
=|A|E(A
*
)
-1
=0, 所以A
*
=0。这与|A
*
|≠0矛盾,故当|A|=0时,有|A
*
|=0。 (Ⅱ)由于从AA
*
=|A|E,两端同时取行列式得 |A|A
*
|=|A|
n
。 当|A|≠0时,|A
*
|=|A|
n-1
; 当|A|=0时,|A
*
|=0。 综上,均有|A
*
|=|A|
n-1
成立。
解析
转载请注明原文地址:https://kaotiyun.com/show/Xcr4777K
0
考研数学一
相关试题推荐
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内司导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得.
f(x)在[-1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f’’’(ξ)=3.
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使得
设f(x)在[0,1]上二阶可导,且|f"(x)|≤1(x∈[0,1]),又f(0)=f(1),证明:
设,求a,b的值.
当x→0时,x—sinxcos2x~cxk,则c=__________,k=__________.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.设C=E—ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,向量组α1,α2,α3,α4线性无关;
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记a=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α
已知线性方程组方程组有解时,求出方程组的全部解.
随机试题
行为人盗窃枪支后,私藏在家里,那么该行为属于【】
A.过氧乙酸B.甲醛C.新洁尔灭D.纯乳酸E.乙醇
在生物-心理-社会医学模式下,不符合对医师的新要求的是( )。
劳动保护通常是指保护劳动者在劳动生产过程中的健康和安全,包括()等方面采取的各种管理和技术措施。
长江公司为上市公司,2016—2017年度发生如下业务:1.2016年1月1日,长江公司以发行股份的方式取得非关联公司——黄河公司40%的股权。发行的普通股数量为200万股,面值为1元,发行价为12元,另发生发行费用40万元。取得股权当日,黄河公司所有者
投资黄金的优势主要有()。
()模型揭示了劳动力市场的基本功能。
以下货币制度中会发生劣币驱逐良币现象的是()。[中央财经大学2011研]
李大钊说:“太平天国禁了鸦片,却采用了宗教;不建设民国,而建设天国。这是他们失败的一个重要原因。”这段话主要是指太平天国
In2009,Pfizerpaid$301millionsettleallegationsbytheJustice1.______DepartmentthatcompanyrepresentativesmarketedGe
最新回复
(
0
)