设曲线L是抛物柱面x=2y2与平面x+z=1的交线. 求曲线L分别绕各个坐标轴旋转一周的曲面方程.

admin2016-07-22  28

问题 设曲线L是抛物柱面x=2y2与平面x+z=1的交线.
求曲线L分别绕各个坐标轴旋转一周的曲面方程.

选项

答案因曲线[*],则曲线L绕x轴旋转一周的旋转曲面方程为y2+z2=[*]x+(1-x)2. 因曲线L的以y为参数的参数方程为[*](-∞<y<+∞),则曲线L绕y轴旋转一周的旋转曲面方程为x2+z2=4y2+(1-2y2)2. 因曲线L的以z为参数的参数方程为[*],(z≤1),则曲线L绕z轴旋转一周的旋转曲面方程为x2+y2=(1-z)2+[*](1-z).

解析
转载请注明原文地址:https://kaotiyun.com/show/Xew4777K
0

最新回复(0)