首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值分别为0,1,1,α1=是A的两个不同的特征向量,且A(α1+α2)=α2. (1)求参数a的值; (2)求方程组Ax=α2的通解; (3)求矩阵A; (4)求正交矩阵Q,使得QTAQ为对角矩阵.
设三阶实对称矩阵A的特征值分别为0,1,1,α1=是A的两个不同的特征向量,且A(α1+α2)=α2. (1)求参数a的值; (2)求方程组Ax=α2的通解; (3)求矩阵A; (4)求正交矩阵Q,使得QTAQ为对角矩阵.
admin
2017-07-26
59
问题
设三阶实对称矩阵A的特征值分别为0,1,1,α
1
=
是A的两个不同的特征向量,且A(α
1
+α
2
)=α
2
.
(1)求参数a的值;
(2)求方程组Ax=α
2
的通解;
(3)求矩阵A;
(4)求正交矩阵Q,使得Q
T
AQ为对角矩阵.
选项
答案
(1)若α
1
,α
2
均为λ
1
=0的特征向量,则有 A(α
1
+α
2
)=Aα
1
+Aα
2
=0.α
1
+0.α
2
—0≠α
2
,矛盾. 若α
1
+α
2
均为λ
2
=λ
3
=1的特征向量,则有 A(α
1
+α
2
)==Aα
1
+Aα
2
=1.α
1
+1.α
2
≠α
2
,同样矛盾. 可见α
1
,α
2
是属于实对称矩阵A的两个不同特征值的特征向量,且α
1
是属于特征值λ
1
=0的特征向量,α
2
是属于特征值λ
2
=λ
3
=1的特征向量,根据实对称矩阵的性质,α
1
,α
2
必正交,故有 α
1
α
2
=1一a=0,得a=1. (2)因为A可对角化,且A=[*],可见秩r(A)=2,于是齐次线性方程组Ax=0的基础解系所含解向量的个数为3一r(A)=1.而Aα
1
=0.α
1
=0,因此α
1
可作为Ax=0的基础解系,又Aα
2
=α
2
,α
2
是Ax=α
2
的特解.故Ax=α
2
的通解为 x=α
2
+kα
1
=[*],其中k为任意常数. (3)设λ
2
=λ
3
=1的另一特征向量为α
3
=[*],则α
3
与α
1
正交,不妨进一步要求α
3
与α
2
也正交,则有 [*] 由A[α
1
,α
2
,α
3
]=[λ
1
α
1
,λ
2
α
2
,λ
3
α
3
],得 A=[λ
1
α
1
,λ
2
α
2
,λ
3
α
3
].[α
1
,α
2
,α
3
]
—1
[*] (4)因为α
1
,α
2
,α
3
已经两两正交,只需单位化: η
1
=[*] 令Q=[η
1
,η
2
,η
3
],则Q为正交矩阵,且有Q
T
AQ=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/XgH4777K
0
考研数学三
相关试题推荐
设A为n阶矩阵,对于齐次线性方程(I)An=0和(Ⅱ)An+1x=0,则必有
下列说法错误的是().
[*]
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0,使得AB=0,则().
行列式
设A为3阶矩阵,P为3阶可逆矩阵,且若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=().
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明丨A丨≠0.
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
设总体X服从标准正态分布,(X1,X2,…,Xn)为总体的简单样本,,则().
对于实数x>0,定义对数函数,依此定义试证:(1)=-lnx(x>0);(2)ln(xy)=lnx+lny(x>0,y>0).
随机试题
组织文化的功能是什么?
大陆法系形成的基础是()
胃经的络穴是
下列哪些情况可以称之为肥大
在统计数据的整理中,对数值型数据主要是作分组整理。()
下列不会导致承诺不生效的是( )。
目前国内外对国际工程投标报价的组成有着不同的划分,主要的两种方法取决于某项费用是否单列,这项费用是()。
用友报表系统中,要生成有数据的报表,最重要的一个步骤是( )。
Thereareasmanydefinitionsofphilosophyastherearephilosophers—perhapsthereareevenmore.Afterthreemillenniaofphil
Thereisa______amongteachersthatchildrenshouldhaveabroadunderstandingoftheworld.
最新回复
(
0
)