首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,.证明: 存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,.证明: 存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
admin
2019-09-23
38
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,
.证明:
存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
选项
答案
令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0,由罗尔定理,存在η
1
∈(a,c),η
2
∈(c,b),使得g’(η
1
)=g’(η
2
)=0,而g’(x)=e
-x
[f’(x)-f(x)]且e
-x
≠0,所以f’(η
1
)-f(η
1
)=0,f’(η
2
)-f(η
2
)=0,令Φ(x)=e
-2x
[f’(x)-f(x)],Φ(η
1
)=Φ(η
2
)=0,由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得Φ’(η)=0,而Φ’(x)=e
-2x
[f"(x)-3f’(x)+2f(x)]且e
-2x
≠0,所以f"(η)-3f’(η)+2f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/XhA4777K
0
考研数学二
相关试题推荐
已知y=y(x)是微分方程(x2+y2)dy=dx—dy的任意解,并在y=y(x)的定义域内取x0,记y0=y(x0).
设函数F(X)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并且满足xf’(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2.求函数y=f(x),并问a为伺值时,图形S绕x轴旋转一周所得的旋转体的体积最小
[*]
设f(x),g(x)在[a,b]上连续,且满足∫axf(t)dt≥∫axg(t)dt,x∈[a,b),∫abf(t)dt=∫abg(t)dt。证明∫abf(x)dx≤∫abxg(x)dx。
设f(x)=x3+4x2一3x一1,试讨论方程f(x)=0在(一∞,0)内的实根情况.
设f(x)在x=0的某个邻域内连续,且f(0)=0,求:(1)f’(0);(2)
求函数f(x,y)=x2+xy+y2在闭区域D={(x,y)|x2+y2≤1}上的最大值和最小值。
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f″(x)<0,且f(x)在[0,1]上的最大值为M.求证:f(x)>0(x∈(0,1)).
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是()
设f(χ,y)=讨论函数f(χ,y)在点(0,0)处的连续性与可偏导性.
随机试题
血红蛋白()
判断休克已纠正,除血压正常外,尿量每小时至少应稳定在【】
简述抗日民族统一战线的内容和任务。
某独立柱基的基底尺寸为2600mm×5200mm,柱底由荷载标准值组合所得的内力值:F1=2000kNF=2200kNM=1000kN.mV=200kN柱基自重和覆土标准值G=486.7kN:基础埋深和工程地质剖面如题图所示。持力层承
根据《公司法》的规定,下列关于国有独资公司的说法中。正确的是()。(2012年)
位于市区的某集团总部为增值税一般纳税人,拥有外贸进出口资格。2019年6月经营业务如下:(1)内销一批服装,向客户开具的增值税发票的金额中分别注明了价款300万元,折扣额30万元。(2)保本理财产品利息收入10.6万元。(3)转让其100%控股的一家
现代商业银行的核心和支柱业务是()。
体育教学中采用示范法时应注意的问题。
幼儿科学包括和数学认知两大子领域,应注重引导幼儿通过()进行科学学习。
中国共产党第八次全国人民代表大会的主要内容是()。
最新回复
(
0
)