首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,.证明: 存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,.证明: 存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
admin
2019-09-23
39
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,
.证明:
存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
选项
答案
令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0,由罗尔定理,存在η
1
∈(a,c),η
2
∈(c,b),使得g’(η
1
)=g’(η
2
)=0,而g’(x)=e
-x
[f’(x)-f(x)]且e
-x
≠0,所以f’(η
1
)-f(η
1
)=0,f’(η
2
)-f(η
2
)=0,令Φ(x)=e
-2x
[f’(x)-f(x)],Φ(η
1
)=Φ(η
2
)=0,由罗尔定理,存在η∈(η
1
,η
2
)[*](a,b),使得Φ’(η)=0,而Φ’(x)=e
-2x
[f"(x)-3f’(x)+2f(x)]且e
-2x
≠0,所以f"(η)-3f’(η)+2f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/XhA4777K
0
考研数学二
相关试题推荐
已知y=y(x)是微分方程(x2+y2)dy=dx—dy的任意解,并在y=y(x)的定义域内取x0,记y0=y(x0).
(1)求二元函数f(χ,y)=χ2(2+y2)+ylny的极值.(2)求函数f(χ,y)=(χ2+2χ+y)ey的极值.
设f(x)在[0,a](a>0)上非负、二阶可导,且f(0)=0,f’’(x)>0,为y=f(x),y=0,x=a围成区域的形心,证明:
设xOy平面第一象限中有曲线Γ:y=y(x),过点A(0,—1),y′(x)>0.又M(x,y)为Γ上任意一点,满足:弧段的长度与点M处Γ的切线在x轴上的截距之差为—1.导出y(x)满足的微分方程和初始条件.
求极限
设且f"(0)存在,求a,b,c.
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1,则正确的是(Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(-1)f"(x)-xf’(x)=ex-1,则下列说法正确的是(A)f(0)
关于次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是()
极限=_____________。
设且f’(0)存在,求a,b.
随机试题
(2010年10月)里格斯认为,在现代工业社会中,成为各种利益和要求的汇聚点和表达者的是_________。
下列不可以使合同发生无效的是()。
石方开挖使用的爆破方法中大多采用集中药包的是()。
在索洛模型中,技术进步是内生变量。()
下列不属于执行理财规划方案原则的是()。
重庆火锅的原料主要有下列的()。
截至2012年年底,我国全年新增网民5090万人(其中农村新增1960万人),互联网普及率为42.1%,较2011年年底提升3.8个百分点,网民中使用手机上网的用户占比由上年年底的69.3%提升至74.5%。微博用户同比增加5873万人,网民中微博用户的比
现代社会的种种特征对教育系统具有决定作用。()
设(X1,X2,…,X3)(n≥2)为标准正态总体,X的简单随机样本,则().
年画(NewYearPicture)是中国特有的一种绘画体裁。贴年画的习俗源于在房子的大门上贴门神(DoorGods)的传统。传统年画以精美的木刻(blockprint)和鲜艳的色彩闻名。主题主要是花鸟、可爱的婴儿、神话传说与历史故事等,表达人们祈望
最新回复
(
0
)