下列命题正确的是( )

admin2020-05-16  19

问题 下列命题正确的是(    )

选项 A、如果AB=E,则矩阵A一定可逆,且A-1=B。
B、如果A,B是n阶可逆矩阵,则AB也可逆,且(AB)-1=B-1A-1
C、如果A,B是n阶可逆矩阵,则A+B也可逆,且(A+B)-1=B-1+A-1
D、如果A,B是n阶不可逆矩阵,则A-B一定不可逆。

答案B

解析 本题考查矩阵可逆的性质。只有针对方阵,才可以讨论其可逆性;两个n阶矩阵是否可逆对它们的和或差的矩阵的可逆性没有影响;两个可逆矩阵的乘积仍可逆。
对于选项A,没有指出A和B是否为方阵,因此不能确定A是否可逆,例如,满足AB=E,但显然A不可逆,A选项错误;
    对于选项B,矩阵A,B可逆,则|A|≠0,|B|≠0,且|AB|=|A||B|≠0,因此AB可逆,且(AB)-1=B-1A-1,B选项正确;
    对于选项C,如果矩阵A,B可逆,但A=-B,则A+B=D,零矩阵不可逆,C选项错误;
对于选项D,设,显然A和B均不可逆,但是A-B是单位矩阵,单位矩阵可逆,D选项错误。故本题选B。
转载请注明原文地址:https://kaotiyun.com/show/Xhx4777K
0

最新回复(0)