设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b),使=0.

admin2017-08-28  24

问题 设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b),使=0.

选项

答案令φ(x)=f(x)∫xag(t)dt+g(x)∫axf(t)dt, φ(x)在区间[a,b]上连续,在区间(a,b)内可导,且 φ’(x)=[f’(x)∫xbg(t)dt一f(x)g(x)]+[g(x)f(x)+g’(x)∫axf(t)dt] =f’(x)∫xbg(t)dt+g’(x)∫axf(t)dt, 因为φ(a)=φ(b)=0,所以由罗尔定理,存在ξ∈(a,b)使φ(ξ)=0,即 f’(ξ)∫ξbg(t)dt+g’(ξ)∫aξf(t)dt=0, 由于g(b)=0及g’(x)<0,所以区间(a,b)内必有g(x)>0, 从而就有∫xbg(t)dt>0,于是有[*]=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/Xnr4777K
0

随机试题
最新回复(0)