首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b),使=0.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b),使=0.
admin
2017-08-28
72
问题
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b),使
=0.
选项
答案
令φ(x)=f(x)∫
x
a
g(t)dt+g(x)∫
a
x
f(t)dt, φ(x)在区间[a,b]上连续,在区间(a,b)内可导,且 φ’(x)=[f’(x)∫
x
b
g(t)dt一f(x)g(x)]+[g(x)f(x)+g’(x)∫
a
x
f(t)dt] =f’(x)∫
x
b
g(t)dt+g’(x)∫
a
x
f(t)dt, 因为φ(a)=φ(b)=0,所以由罗尔定理,存在ξ∈(a,b)使φ(ξ)=0,即 f’(ξ)∫
ξ
b
g(t)dt+g’(ξ)∫
a
ξ
f(t)dt=0, 由于g(b)=0及g’(x)<0,所以区间(a,b)内必有g(x)>0, 从而就有∫
x
b
g(t)dt>0,于是有[*]=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Xnr4777K
0
考研数学一
相关试题推荐
设二次型f(x1,x2,x3)=x12-x22+2ax1x3+4x2x3,的负惯性指数为1,则a的取值范围是
设总体X服从的分布为总体的简单随机样本,其中m为未知参数,且取值为正整数,求参数m的矩估计和最大似然估计量.
设二维随机变量(X,Y)在区域D={(x,y)|0≤y≤1,y≤x≤y+1}上服从均匀分布,令Z=X—Y,求X与Y的边缘概率密度函数并判断随机变量X与y的独立性;
设A是n阶正定矩阵,x是n维列向量,E是n阶单位阵,记写出二次型f=|W|的矩阵表达式,并讨论f的正定性.
微分方程的通解为y=___________.
设两个总体分别为X~N(μ1,σ12)和y~N(μ2,σ22),先假设检验总体X的均值不小于总体y的均值,则检验假设为()
设A是3×3矩阵,β1,β2,β3是互不相同的3维列向量,且都不是方程组Ax=0的解,记B=[β1,β2,β3],且满足r(AB)<r(A),r(AB)<r(B).则r(AB)等于()
设(X,Y)的联合分布密度为求系数A及(X,Y)关于X,Y的边缘密度,且说明X,Y是否相互独立?
微分方程满足初始条件的特解是____________.
设X,Y为两个随机变量,其中E(X)=2,E(Y)=一1,D(X)=9,D(Y)=16,且X,Y的相关系数为,由切比雪夫不等式得P{|X+Y一1|≤10}≥().
随机试题
网上产品应符合的要求包括【】
风气内动属于虚的
A.俯卧位B.仰靠坐位C.侧伏坐位D.俯伏坐位针刺双侧心俞、志室、委中穴,宜选的体位是
公募证券是指发行人通过中介机构向特定的社会公众投资者公开发行的证券。()
2014年10月,甲公司进口一辆小汽车自用,支付买价17万元,货物运抵我国关境内输入地点起卸前的运费和保险费共计3万元,货物运抵我国关境内输入地点起卸后的运费和保险费共计2万元,另支付购货佣金1万元,已知关税税率为20%,消费税税率为25%,城建税税率为7
如果人们工资增加,则增加的将是()。
影响学习动机的内部因素是()。
发明的专利权、版权或商业秘密带来的独占权,是由哪种市场垄断造成的?()
-2,-8,0,64,()
Ifanewcharteroftherightsofpeople(intheFirstWorld,orNorth,orwhateveryouliketocallthepartwherepeopledonoto
最新回复
(
0
)