首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实矩阵,AT是A的转置矩阵.则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
设A为n阶实矩阵,AT是A的转置矩阵.则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
admin
2017-10-12
59
问题
设A为n阶实矩阵,A
T
是A的转置矩阵.则对于线性方程组(I):AX=0和(Ⅱ):A
T
AX=0,必有
选项
A、(Ⅱ)的解是(I)的解,(I)的解也是(Ⅱ)的解.
B、(Ⅱ)的解是(I)的解,但(I)的解不是(Ⅱ)的解.
C、(I)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(I)的解.
D、(I)的解是(Ⅱ)的解,但(Ⅱ)的解不是(I)的解.
答案
A
解析
若η是(I)的解,则Aη=0,那么
(A
T
A)η=A
T
(Aη):A
T
0=0,即η是(Ⅱ)的解.
若α是(Ⅱ)的解,有A
T
Aα=0,用α
T
左乘得
α
T
A
T
Aα=0,即(Aα)
T
(Aα)=0.
亦即Aα自己的内积(Aα,Aα)=0,故必有Aα=0,即α是(I)的解.
所以(I)与(Ⅱ)同解,故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/XvH4777K
0
考研数学三
相关试题推荐
设函数y=f(x)具有二阶导数,且f’(x)>0,f(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
利用幂级数的和函数的性质求下列级数在各自收敛域上的和函数:
设f〞(x)存在,求下列函数y的二阶导数d2y/dx2:(1)y=f(e-x);(2)y=ln[f(x)].
设函数f(x)=1/(ex/(x-1)-1),则
设u=ex+y+z,且y,z由方程∫0xdt+ln(1+y)=0及ey+z=e+lnz确定为x的函数,则=________
计算二重积分|x2+y2一1|dσ,其中D={(x,y)|0≤x,y≤1}。
差分方程yx+1一3yx=2.3x的通解为_____.
设A为三阶矩阵,α1,α2,α3是三维线性无关的向量组,且Aα1=α1+3α2,Aα2=5α1一α2,Aα3=α1一α2+4α3.求可逆Q,使得Q-1AQ为对角阵.
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,(I)求a的值;(Ⅱ)求齐次方程组(i)的解;(Ⅲ)求齐次方程(ii)的解.
用正交变换法化二次型f(x1+x2+x3)=x12+x22+x32—4x1x2—4x1x3—4x2x3为标准二次型.
随机试题
车削左右对称的内圆锥时,怎样才能较方便地使两内圆锥锥度相等?
政府采购物资,大部分采用的招标办法是()
A.血小板花生四烯酸代谢缺陷B.贮存池病:α颗粒缺陷C.血小板无力症D.贮存池病:致密颗粒缺陷E.巨大血小板综合征ADP诱导的聚集常减低,无二相聚集,胶原和花生四烯酸诱导的血小板聚集均低下
睑腺炎可发生于
药物信息咨询服务的第一步是
早孕的临床表现不包括()
针灸治疗阳痿的基本处方不包括
关于律师和律师事务所,下列情况中哪些选项不符合法律规定?
1,2,3,7,46,( )。
Nike’sSuccessNikeperformedwellduringthelastquarter.Businesswasupineverymajormarket,in【L1】______,bothinits
最新回复
(
0
)