设随机变量X1,…Xn,Xn+1独立同分布,且P(X1=1)=p,P(X1=0)=1-p,记:

admin2019-01-23  5

问题 设随机变量X1,…Xn,Xn+1独立同分布,且P(X1=1)=p,P(X1=0)=1-p,记:

选项

答案EYi=P(Xi+Xi+1=1)=P(Xi=0,Xi+1=1)+P(Xi=1,Xi+1=0)=2p(1-p),i=1,…,n[*]=2np(1-p),而E(Yi2)=P(Xi+Xi+1=1)=2p(1-p),∴DYi=E(Y22)-(EYi)2=2p(1-p)[1-2p(1-p)],i=1,2,…,n.若l-k≥2,则Yk与Yl独立,这时cov(Yk,Yl)=0,而E(YkYk+1)=P(Yk=1,Yk+1=1)=P(Xk+Xk+1=1,Xk+1+Xk+2=1)=P(Xk=0,Xk+1=1,Xk+2=0)+P(Xk=1,Xk+1=0,Xk+2=1)=(1-p)2p+p2(1-p)=p(1-p),∴cov(Yk,Yk+1)=E(YkYk+1)-EYk.EYk+1=p(1-p)-4p2(1-p)2,故[*]=2np(1-p)[1-2p(1-p)]+[*]cov(Yk,Yk+1)=2np(1-p)[1-2p(1-p)]+2(n-1)[p(1-p)-4p2(1-p)2]=2p(1-p)[2n-6np(1-p)+4p(1-p)-1].

解析
转载请注明原文地址:https://kaotiyun.com/show/XwM4777K
0

相关试题推荐
最新回复(0)