首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型f(χ1,χ2,…,χn)=χiχj. (1)用矩阵乘积的形式写出此二次型. (2)f(χ1,χ2,…,χn)的规范形和XTAX的规范形是否相同?为什么?
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型f(χ1,χ2,…,χn)=χiχj. (1)用矩阵乘积的形式写出此二次型. (2)f(χ1,χ2,…,χn)的规范形和XTAX的规范形是否相同?为什么?
admin
2019-05-11
76
问题
设A是一个可逆实对称矩阵,记A
ij
是它的代数余子式.二次型f(χ
1
,χ
2
,…,χ
n
)=
χ
i
χ
j
.
(1)用矩阵乘积的形式写出此二次型.
(2)f(χ
1
,χ
2
,…,χ
n
)的规范形和X
T
AX的规范形是否相同?为什么?
选项
答案
(1)由于A是实对称矩阵,它的代数余子式A
ij
=A
ji
[*]i,j并且A
-1
也是实对称矩阵,其(i,j)位的元素就是A
ij
/|A|,于是f(χ
1
,χ
2
,…,χ
n
)=X
T
A
-1
X. (2)A
-1
的特征值和A的特征值互为倒数关系,因此A
-1
和A的正的特征值的个数相等,负的特征值的个数也相等,于是它们的正,负惯性指数都相等,从而A
-1
和A合同,f(χ
1
,χ
2
,…,χ
n
)和X
T
AX有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/XyV4777K
0
考研数学二
相关试题推荐
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中(1)求方程组(Ⅰ)的基础解系;(2)求方程组(Ⅱ)BX=0的基础解系;(3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设函数f(χ)在χ=1的某邻域内有定义,且满足|f(χ)-2eχ|≤(χ-1)2,研究函数f(χ)在χ=1处的可导性.
二次型f(x1,z2,z3)一z;+ax;+z;一4x1z2—8x1z3—4x2.273经过正交变换化为标准形5y12+by22+4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
设A是3×4阶矩阵且r(A)=1,设(1,-2,1,2)T,(1,0,5,2)T,(-1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设函数f(χ)在[0,+∞)内可导,f(0)=1,且f′(χ)+f(χ)-f(t)dt=0.(1)求f′(χ);(2)证明:当χ≥0时,e-χ≤f(χ)≤1.
微分方程y′-χe-y+=0的通解为_______.
设曲线y=lnχ与y=k相切,则公共切线为_______.
设α1=,其中c1,c2,c3,c4为任意常数,则下列向量组线性相关的为
求函数f(x)=sinx的间断点,并指出其类型。
随机试题
郑某等人多次预谋通过爆炸抢劫银行运钞车。为方便跟踪运钞车,郑某等人于2012年4月6日杀害一车主,将其面包车开走(事实一)。后郑某等人制作了爆炸装置,并多次开面包车跟踪某银行运钞车,了解运钞车到某储蓄所收款的情况。郑某等人摸清运钞车情况后,于同年6月8日将
设A是m×n的非零矩阵,B是n×l非零矩阵,满足AB=0,以下选项中不一定成立的是()。
图示三铰支架上作用两个大小相等、转向相反的力偶m1和m2,其大小均为100kN·m,支架重力不计。支座B的反力RB的大小和方向为( )。
能反映一个组织系统中各项工作之间逻辑关系的组织工具是()
某连锁娱乐企业是增值税一般纳税人,主要经营室内游艺设施。2021年11月经营业务如下:(1)当月游艺收入价税合计636万元,其中门票收入为300万元、游戏机收入为336万元。当月通过税控系统实际开票价款为280万元。(2)当月以融资性售后回租形式融资,
1990年,我们党的十四大报告进一步系统地阐述了建设有中国特色社会主义理论的主要内容。( )
根据《合同法》规定,违反合同一方要承担违约责任,下列不属于承担违约责任方式的是()。
8个人比赛国际象棋,约定每两人之间都要比赛一局,胜者得2分,平局得1分,负的不得分。在进行了若干局比赛之后,发现每个人的分数都不一样。问最多还有几局比赛没比?()
数据字典是各类数据描述的集合,它通常包括5个部分,即数据项、数据结构、数据流、【】和处理过程。
Lightlevelsarecarefullycontrolledtofallwithinanacceptablelevelfor______readingconvenience.
最新回复
(
0
)