首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型f(χ1,χ2,…,χn)=χiχj. (1)用矩阵乘积的形式写出此二次型. (2)f(χ1,χ2,…,χn)的规范形和XTAX的规范形是否相同?为什么?
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型f(χ1,χ2,…,χn)=χiχj. (1)用矩阵乘积的形式写出此二次型. (2)f(χ1,χ2,…,χn)的规范形和XTAX的规范形是否相同?为什么?
admin
2019-05-11
67
问题
设A是一个可逆实对称矩阵,记A
ij
是它的代数余子式.二次型f(χ
1
,χ
2
,…,χ
n
)=
χ
i
χ
j
.
(1)用矩阵乘积的形式写出此二次型.
(2)f(χ
1
,χ
2
,…,χ
n
)的规范形和X
T
AX的规范形是否相同?为什么?
选项
答案
(1)由于A是实对称矩阵,它的代数余子式A
ij
=A
ji
[*]i,j并且A
-1
也是实对称矩阵,其(i,j)位的元素就是A
ij
/|A|,于是f(χ
1
,χ
2
,…,χ
n
)=X
T
A
-1
X. (2)A
-1
的特征值和A的特征值互为倒数关系,因此A
-1
和A的正的特征值的个数相等,负的特征值的个数也相等,于是它们的正,负惯性指数都相等,从而A
-1
和A合同,f(χ
1
,χ
2
,…,χ
n
)和X
T
AX有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/XyV4777K
0
考研数学二
相关试题推荐
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中(1)求方程组(Ⅰ)的基础解系;(2)求方程组(Ⅱ)BX=0的基础解系;(3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
a,b取何值时,方程组有解?
设f(χ)∈C[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得2e2ξ-η=(ea+eb)[f′(η)+f(η)].
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
用配方法化下列二次型为标准形:f(χ1,χ2,χ3)=χ12+2χ22-5χ32+2χ1χ2-2χ1χ3+2χ2χ3.
设f(χ)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).证明:存在ξi∈(a,b)(i=1,2,…,n),使得=1.
设函数y=y(χ)满足微分方程y〞-3y′+2y=2eχ,且其图形在点(0,1)处的切线与曲线y=χ2-χ+1在该点的切线重合,求函数y=y(χ).
设A=,|A|=-1,α=为A*的特征向量,求A*的特征值λ及a,b,c和A对应的特征值μ.
设常数k>0,函数内零点个数为()
设f(x)连续,且f(1)=0,f’(1)=2,求极限
随机试题
甲县工商局对汤山纺织厂作山罚款200万元的处罚决定,并且立即执行。汤山纺织厂向市工商局申请复议,市工商局维持了处罚决定,纺织厂随后向法院提起诉讼,一审法院判决维持该处罚决定。汤山纺织厂提出上诉,在二审中才提出损害赔偿的要求,二审法院认定县工商局作出的处
依其控制的内容,经营者控制的可分为【】
酚妥拉明:
撤销权在性质上属于()。
由具有专业知识和经验的工程技术人员对资产的实体各主要部位进行观察,以判断确定被评估建筑物的损耗率的方法称为( )。
阅读《珍珠鸟》教学实录(片段),按照要求答题。师:(看图)在作者眼里,鸟是幸福的,作者也是幸福的。这是多么美好的意境呀!你能给书上的插图起个名字吗?(学生思考片刻,纷纷举手)生:“幸福人家”。生:“友谊地久天长”。
在一种网络游戏中,如果一位玩家在A地拥有一家旅馆,他就必须同时拥有A地和B地。如果他在C花园拥有一家旅馆,他就必须拥有C花园以及A地和B地两者之一。如果他拥有B地,他还拥有C花园。假如该玩家不拥有B地,可以推出下面哪一个结论?
若函数f(x)=(x-1)(x-2)(x-3)(x-4),则f’(x)的零点的个数为()。
America—thegreat"meltingpot"—hasalwaysbeenarichblendofculturaltraditionsfromallovertheworld.ManyAmericanfamil
Holdthereceiverasclosetoyourearaspossibleandtakedowneverywordofthemessage.
最新回复
(
0
)