首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型f(χ1,χ2,…,χn)=χiχj. (1)用矩阵乘积的形式写出此二次型. (2)f(χ1,χ2,…,χn)的规范形和XTAX的规范形是否相同?为什么?
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型f(χ1,χ2,…,χn)=χiχj. (1)用矩阵乘积的形式写出此二次型. (2)f(χ1,χ2,…,χn)的规范形和XTAX的规范形是否相同?为什么?
admin
2019-05-11
68
问题
设A是一个可逆实对称矩阵,记A
ij
是它的代数余子式.二次型f(χ
1
,χ
2
,…,χ
n
)=
χ
i
χ
j
.
(1)用矩阵乘积的形式写出此二次型.
(2)f(χ
1
,χ
2
,…,χ
n
)的规范形和X
T
AX的规范形是否相同?为什么?
选项
答案
(1)由于A是实对称矩阵,它的代数余子式A
ij
=A
ji
[*]i,j并且A
-1
也是实对称矩阵,其(i,j)位的元素就是A
ij
/|A|,于是f(χ
1
,χ
2
,…,χ
n
)=X
T
A
-1
X. (2)A
-1
的特征值和A的特征值互为倒数关系,因此A
-1
和A的正的特征值的个数相等,负的特征值的个数也相等,于是它们的正,负惯性指数都相等,从而A
-1
和A合同,f(χ
1
,χ
2
,…,χ
n
)和X
T
AX有相同的规范形.
解析
转载请注明原文地址:https://kaotiyun.com/show/XyV4777K
0
考研数学二
相关试题推荐
若=χ+y且满足z(χ,0)=χ,z(0,y)=y2,求z(χ,y).
设f(χ)在χ=a处二阶可导,则等于().
设C=为正定矩阵,令P=,(1)求PTCP;(2)证明:D-BA-1BT为正定矩阵.
设二次型f(χ1,χ2,χ3)=XTAX,A的主对角线上元素之和为3,又AB+B=O,其中B=(1)求正交变换X=QY将二次型化为标准形;(2)求矩阵A.
f(χ1,χ2,χ3,χ4)=XTAX的正惯性指数是2,且A2=2A=O,该二次型的规范形为_______.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
,αTβ=aibi≠0,求A的全部特征值,并证明A可以对角化.
求极限
若函数z=2x2+2y2+3xy+ax+by+c在点(一2,3)处取得极小值一3.则常数a、b、c之积abc=______.
设讨论y=f[g(x)]的连续性,若有间断点并指出类型.
随机试题
A.随机观察、会谈法B.定式访谈法C.定式观察法D.评定量表法E.心理测验
肺癌所致阻塞性肺炎有以下临床征象.除了
申请成为国家圃或专业圃的受理及审核机构均为直属检验检疫局。( )
下列税种中,属于财产税的是()。
心智技能与操作技能相比,具有()特点。
下面标点符号使用正确的一项是()。
在世界杯金靴奖的争夺中,如果斯内德没有获得金靴奖并且穆勒助攻次数比斯内德多的话,弗兰将获得金靴奖。补充以下哪项,能够推出斯内德获得了金靴奖?
设z=f(2x-y)+g(x,xy),其中函数f(t)二阶可导,g(u,v)具有二阶连续偏导数,求
Besides"American"characteristics-individualism,self-reliance,informality,punctualityanddirectness,therearealsosome"n
CurrentChallengesConfrontingU.S.HigherEducationThefirstchallenge:forceofthemarketplace•Currentsituation:—pr
最新回复
(
0
)