首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是连续且单调递增的奇函数,设F(x)=,则F(x)是( )
设f(x)是连续且单调递增的奇函数,设F(x)=,则F(x)是( )
admin
2019-12-24
56
问题
设f(x)是连续且单调递增的奇函数,设F(x)=
,则F(x)是( )
选项
A、单调递增的奇函数。
B、单调递减的奇函数。
C、单调递增的偶函数。
D、单调递减的偶函数。
答案
B
解析
令x-u=t,则
令t=-u,
因为f(x)是奇函数,则
故F(x)=-F(-x)为奇函数。
由积分中值定理可得
,ξ介于0到x之间,则
F’(x)=f(ξ)x-xf(x)=[f(ξ)-f(x)]x,
因为f(x)单调递增,当x>0时,ξ∈[0,x],f(ξ)-f(x)<0,所以F’(x)<0,F(x)单调递减;当x<0时,ξ∈[x,0],f(ξ)-f(x)>0,所以F’(x)<0,F(x)单调递减。所以F(x)是单调递减的奇函数。
本题利用换元法比较F(x)与F(-x)的关系,判断其奇偶性,在判断其单调性的时候利用了积分中值定理。
转载请注明原文地址:https://kaotiyun.com/show/Y1D4777K
0
考研数学三
相关试题推荐
设随机变量X服从(0,2)上的均匀分布,Y服从参数λ=2的指数分布,且X,Y相互独立,记随机变量Z=X+2Y。(Ⅰ)求Z的概率密度;(Ⅱ)求EZ,DZ。
已知三元二次型xTAx的平方项系数都为0,α=(1,2,-1)T满足Aα=2α。(Ⅰ)求xTAx的表达式;(Ⅱ)求作正交变换x=Qy,把xTAx化为标准二次型。
已知随机变量X,Y的概率分布分别为P{X=一1}=P{X=0}=,P{X=1}=;P{Y=0}=,P{Y=1}=,P{Y=2}=,并且P{X+Y=1}=1,求:(I)(X,Y)的联合分布;(Ⅱ)X与Y是否独立?为什么?
证明对于任何m×n实矩阵A,ATA的负惯性指数为0.如果A秩为n,则ATA是正定矩阵.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12一4y22一4y32,Q的第1列为(1)求A.(2)求一个满足要求的正交矩阵Q.
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2.(1)求a.(2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形.(3)求方程f(x1,x2,x3)=0的解.
设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2一α3.又设β=α1+α2+α3+α4,求AX=β的通解.
设n阶矩阵A,B满足AB=aA+bB.其中ab≠0,证明(1)A—bE和B—aE都可逆.(2)AB=BA.
z=f(xy)+yg(x2+y2),其中f,g二阶连续可导,则=______.
随机试题
什么叫做数字证书?常见的数字证书可以分成哪几类?
普通合伙企业的新合伙人对入伙前的合伙企业债务承担________。普通合伙企业的退伙人应对退伙前合伙企业发生的债务承担________。
在以下打印机中,打印速度最快的是()
A、镇痛作用B、抗癌活性C、抗菌消炎作用D、抗中毒性休克作用E、具有拟胆碱作用;与上述生理活性相对应的生物碱是黄连中的小檗碱
A、图像视觉的非线性校正B、图像插补处理C、信号动态范围的对数变换D、工作站图文处理E、三维重建属于前处理的
患者女,35岁,主诉心悸、怕热、神经过敏、失眠。护士评估发现病人手有震颤,肌无力,皮肤温暖湿润,心动过速。这个病人最可能的诊断是
某冶炼厂为扩大生产修建一座新厂房。在施工过程中遇到多雨天气,因屋面防水未及时做完,而导致回填土及灰土浸水而无法使用。竣工交付阶段监理工程师经检查发现有6根排架柱基础下沉,监理工程师立刻对该事故展开调查。根据调查结果分析原因认为,排架柱基础下沉主要是由施工过
其他单位因特殊原因需要使用本单位的原始凭证,正确的做法是()。
班主任处理偶发事件的原则有()
Althoughtherearebodylanguagesthatcancrossculturalboundaries,cultureisstillasignificantfactorinallbodylanguage
最新回复
(
0
)