首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量(X,Y)服从区域D上的均匀分布,D={(x,y)︱0≤x≤2,0≤y≤2},令U=(X+Y)2,试求EU与DU。
设随机变量(X,Y)服从区域D上的均匀分布,D={(x,y)︱0≤x≤2,0≤y≤2},令U=(X+Y)2,试求EU与DU。
admin
2018-11-16
36
问题
设随机变量(X,Y)服从区域D上的均匀分布,D={(x,y)︱0≤x≤2,0≤y≤2},令U=(X+Y)
2
,试求EU与DU。
选项
答案
求一个随机变量U的数字特征,可以先求出U的概率密度,在计算EU与DU。 方法一:令V=X+Y,先求V的分布函数F(ν)与密度函数f(ν)。 [*] 其中D
1
与D
2
如图所示,于是[*] [*] 故[*], 又[*], 因此[*]。 方法二:直接应用随机变量函数的期望公式:若(X,Y)~f(x,y),则有[*]。 具体到本题f(x,y)= [*]。 方法三:就本题具体条件可以判断该二维均匀分布随机变量(X,Y)的两个分量X与Y相互独立,且都服从区间[0,2]上均匀分布,因此有[*],EU
2
=E(X+Y)
4
=EX
4
+4EX
3
Y+6EX
2
Y
2
+4EXY
3
+EY
4
。 由于X与Y独立,因此X
3
与Y,X
2
与Y
2
,X与Y
3
也分别独立,其乘积的期望等于期望的乘积。 EU
2
=EX
4
+4EX
3
EY+6EX
2
EY
2
+4EXEY
3
+EY
4
=[*],DU=EU
2
-(EU)
2
=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/byW4777K
0
考研数学三
相关试题推荐
[*]
设证明A可对角化;
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n一r+l个.
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β一α1,…,β—αm线性无关.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
设函数f(x)满足xf’(x)一2f(x)=一x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线y=f(x);
设函数f(x)在x=1的某邻域内有定义,且满足|f(x)一2ex≤(x一1)2,研究函数f(x)在x=1处的可导性.
函数在区间[0,2]上的平均值为________.
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。(Ⅰ)试将x=x(y)所满足的微分方程=0变换为y=y(x)满足的微分方程;(Ⅱ)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
随机试题
1937年,在淞沪会战中率领“八百壮士”孤军据守四行仓库的爱国将领是()
A.天蓝色与白色相间B.绿色与白色相间C.黑白相间,黑底白字D.宝石蓝色精神药品的专有标志样式是
简述瑕疵证据的补正规则。
在近代传统诗坛上,樊增祥属于()
A.全血胆碱酯酶活性测定B.血中碳氧血红蛋白测定C.血中游离原卟啉测定D.血中锌卟啉测定E.血中高铁血红蛋白测定机体接触有机磷农药的生物监测指标是
以下哪项是类风湿性关节炎的中医病名
征收15亩蔬菜生产基地,应当()。甲公司对陈某所购商品房承担的维修期从()之日起计算。
Thecompanyismostworriedabouthow______.Whendealingwithenquiries,staffusually______.
Theabilityoffallingcatstorightthemselvesinmidairandlandontheirfeethasbeenasourceofwonderforages.Biologist
【S1】【S3】
最新回复
(
0
)