首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在区间[0,1]上具有2阶导数,f(1)>0,<0,证明: 方程f(x)=0在区间(0,1)至少存在一个实根;
f(x)在区间[0,1]上具有2阶导数,f(1)>0,<0,证明: 方程f(x)=0在区间(0,1)至少存在一个实根;
admin
2017-02-21
52
问题
f(x)在区间[0,1]上具有2阶导数,f(1)>0,
<0,证明:
方程f(x)=0在区间(0,1)至少存在一个实根;
选项
答案
f(x)二阶导数,f(1)>0,[*] 由于[*]<0,根据极限的保号性得 ヨδ>0,[*]x∈(0,δ)有f(x)/x<0,即f(x)<0 进而ヨx
0
∈(0,δ),有f(δ)<0 又由于f(x)在[δ,1]上连续,由f(δ)<0,f(1)>0根据零点定理得: 至少存在一点ξ∈(δ,1),使f(ξ)=0,即得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/Y3u4777K
0
考研数学一
相关试题推荐
由Y=sinx的图形作下列函数的图形:(1)y=sin2x(2)y=2sin2x(3)y=1—2sin2x
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
用待定系数法,将下列积分中被积函数的分子设为Af(x)+Bfˊ(x),利用的求法求下列不定积分:
设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则丨B丨=__________.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至少有一件是废品”;
求点(2,1,0)到平面3x+4y+5z=0的距离.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设f(x,y)与φ(x,y)均为可微函数,且(φy’,(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是().
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.讨论F(t)在区间(0,+∞)内的单调性;
(1998年试题,十)已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ζ2=4,求a,b的值和正交矩阵P.
随机试题
WhathavetheEuropeancountriesagreedonattheBrusselsSummit?
胆固醇不能转变成
A.肾结核B.尿道炎C.前列腺炎D.膀胱炎E.肾盂肾炎男性,30岁,1年来尿急、尿频伴会阴部不适,坠痛,近2个月来症状加重伴终末血尿()
患者人流术后一周.出现下腹疼痛、发热、腰痛、阴道分泌物浑浊等症状,白细胞增高.中性粒细胞增加,妇科检查子宫体压痛.稍大而软,双侧附件有包块,压痛明显。其诊断是
安全管理工作中消除隐患、防止事故发生、改善劳动条件的重要手段是()。
建设工程项目的技术风险类型不包括( )。
根据下面资料,作答下列问题。王老师上课时,小李同学指出他对某个问题的讲解有错误,王老师当即恼怒起来:“小李同学,算你厉害,老师不如你,以后的课就由你来上好了!”全班同学随老师一起嘲笑小李同学。从此以后,小李在课堂上即使发现问题也不主动讲了。教
中国提出建设“丝绸之路经济带”和“21世纪海上丝绸之路”(简称“一带一路”)的重大倡议,是扩大和深化对外开放的重大举措,也是实现与亚欧非及世界各国互利共赢的重大举措。“一带一路”的基本原则是()。
显示器是PC机的一种输出设备,它必须通过显示控制卡(简称显卡)与PC机相连。在下面有关PC机显卡的叙述中,哪一个是错误的?______
一间宿舍可住多个学生,则实体宿舍和学生之间的联系是()。
最新回复
(
0
)