首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在区间[0,1]上具有2阶导数,f(1)>0,<0,证明: 方程f(x)=0在区间(0,1)至少存在一个实根;
f(x)在区间[0,1]上具有2阶导数,f(1)>0,<0,证明: 方程f(x)=0在区间(0,1)至少存在一个实根;
admin
2017-02-21
65
问题
f(x)在区间[0,1]上具有2阶导数,f(1)>0,
<0,证明:
方程f(x)=0在区间(0,1)至少存在一个实根;
选项
答案
f(x)二阶导数,f(1)>0,[*] 由于[*]<0,根据极限的保号性得 ヨδ>0,[*]x∈(0,δ)有f(x)/x<0,即f(x)<0 进而ヨx
0
∈(0,δ),有f(δ)<0 又由于f(x)在[δ,1]上连续,由f(δ)<0,f(1)>0根据零点定理得: 至少存在一点ξ∈(δ,1),使f(ξ)=0,即得证.
解析
转载请注明原文地址:https://kaotiyun.com/show/Y3u4777K
0
考研数学一
相关试题推荐
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
设随机变量X的绝对值不大于1,P(X=1)=1/4,P(X=-1)=1/8,而在事件{-1
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
设y=y(x)是函数方程ex+y=2+x+2y在点(1,-1)所确定的隐函数,求y〞|(1,-1)和d2y.
某保险公司开展养老保险业务,当存入R。(单位:元)时,t年后可得到养老金R0=R0eat(a>O)(单位:元),另外,银行存款的年利率为r,按连续复利计息,问t年后的养老金现在价值是多少(即养老金的现值是多少)?
曲面x2+2y2+3z2=21在点(1,-2,2)的法线方程为____________.
设函数f(x)在(-∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d),记证明曲线积分I与路径无关;
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
已知非齐次线性方程组有3个线性无关的解.求a,b的值及方稗组的通解.
设二维随机变量(X,Y)的概率分布为已知随机事件{X=0}与{X+Y=1}相互独立,则
随机试题
A.不溶于水,可溶于氢氧化钠B.与吡啶-硫酸铜试液反应显蓝色C.在空气中易氧化变成红色D.巴比妥类药物,且水溶液可吸收二氧化碳而变浑浊E.注射剂常以盐酸调节适宜的pH值
健康促进是指教育以及能促使行为与环境改变的
【背景资料】某城市桥梁工程项目,施工人员在大体积墩台及其基础施工时的部分施工工艺和方法为:(1)在墩台基础中埋放了厚度为120mm的石块,且埋放的数量为混凝土结构体积的20%;(2)在浇筑混凝土时选择了一天中气温较高时进行;(3)在后张有黏结预应力混凝土
高性能混凝土的特征之一是()。
工程量清单的最基本的功能是( )。
西藏的一些高僧往往以经年累月的光阴用五彩细砂砌成巧夺天工的曼荼罗图案,整个过程中,作业者口诵经文、心存敬意、屏息凝视、一丝不苟。几经辛苦,到了功行完满的一刻,却会毫不留恋地一手抹掉。这一种态度,对惯于享用先进科技和讲求功效的现代人来说,骤看简直不可思议,但
按国际惯例,可以给予申请签证者高于或低于护照种类的签证。()
Prenland的人口普查数据表明,当地30多岁未婚男性的人数是当地30多岁的未婚女性人数的10倍,这些男性都想结婚,但是很显然,除非他们多数与Prenland以外的妇女结婚,否则除去一小部分外,大多数还是会独身。以上论述依据下面哪个假设?
中华民族伟大复兴的中国梦,包含着丰富的思想内涵,其中最核心的内容是国家富强、民族振兴、人民幸福。这三者之间的关系是
下列属于计算机程序设计语言的是()。
最新回复
(
0
)