首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n维向量组A:a1,a2,…,an,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
设有n维向量组A:a1,a2,…,an,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
admin
2021-02-25
87
问题
设有n维向量组A:a
1
,a
2
,…,a
n
,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
选项
答案
充分性([*]):若任一n维向量都可由a
1
,a
2
,…,a
n
线性表示,则n维单位坐标向量e
1
,e
2
,…,e
n
能由a
1
,a
2
,…,a
n
线性表示,则R(e
1
,e
2
,…,e
n
)≤R(a
1
,a
2
,…,a
n
),而R(e
1
,e
2
,…,e
n
)=n,R(a
1
,a
2
,…,a
n
)≤n,所以R(a
1
,a
2
,…,a
n
)=n,即向量组a
1
,a
2
,…,a
n
线性无关. 必要性([*]):任给一n维向量b,则n+1个向量a
1
,a
2
,…,a
n
,b线性相关,而a
1
,a
2
,…,a
n
线性无关,所以向量b可由向量a
1
,a
2
,…,a
n
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/Y484777K
0
考研数学二
相关试题推荐
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
设y=f(x)为区间[0,1]上的非负连续函数.证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
若矩阵相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
设f(x)在[a,b]上连续,在(a,b)内可导(0≤a<b≤).证明:存在ξ,η∈(a,b),使得
设f(x)连续,且=2,则下列结论正确的是().
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.若β=α1+α2+α3,求方程组Ax=β的通解.
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=-2,则行列式|-A1-2A2,2A2+3A3,-3A3+2A1|=_______.
若3阶非零方阵B的每一列都是方程组的解,则λ=________,|B|=________.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为____________.
设A、B为3阶方阵且A-1BA=6A+BA,则矩阵B=_______.
随机试题
钎焊前焊件表面准备工作没有()。
《中华人民共和国矿产资源法》规定:关闭矿山,必须提出()及有关采掘工程、不安全隐患、土地复垦利用、环境保护的资料,并按照国家规定报请审查批准。
企业实施科学化、规范化安全管理的工作基础是()。
我国的政策性银行有()。
下列关于出口信贷的说法中正确的是()。
根据会计法律制度的规定,记账凭证的保管期限为()年。
《中共中央关于推进农村改革发展若干重大问题的决定》指出,要继续推进农村综合改革,在()年基本完成乡镇机构改革任务。
追求与放弃都是正常的生活态度,有所追求就应有所放弃,有价值的人生,需要开拓进取、成就事业,但更要懂得正确和必要的放弃——这不是_____,而是一种_____。依次填入横线处的词语,最恰当的一组是()。
DebateovertheUseofRenewableEnergyAusubelofRockefellerUniversityinNewYork,USsaysthekeyrenewable(可再生的)ener
HowmanybuildingplacesdoestheBuildingServicelookateachmonthtoseeifthingsaregoingonwell?Whatshouldyoudoif
最新回复
(
0
)