首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n维向量组A:a1,a2,…,an,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
设有n维向量组A:a1,a2,…,an,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
admin
2021-02-25
105
问题
设有n维向量组A:a
1
,a
2
,…,a
n
,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
选项
答案
充分性([*]):若任一n维向量都可由a
1
,a
2
,…,a
n
线性表示,则n维单位坐标向量e
1
,e
2
,…,e
n
能由a
1
,a
2
,…,a
n
线性表示,则R(e
1
,e
2
,…,e
n
)≤R(a
1
,a
2
,…,a
n
),而R(e
1
,e
2
,…,e
n
)=n,R(a
1
,a
2
,…,a
n
)≤n,所以R(a
1
,a
2
,…,a
n
)=n,即向量组a
1
,a
2
,…,a
n
线性无关. 必要性([*]):任给一n维向量b,则n+1个向量a
1
,a
2
,…,a
n
,b线性相关,而a
1
,a
2
,…,a
n
线性无关,所以向量b可由向量a
1
,a
2
,…,a
n
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/Y484777K
0
考研数学二
相关试题推荐
设f(x,y)在单位圆x3+y2≤1上有连续的偏导数,且在边界上取值为零,f(0,0)=2004,试求极限
设y=f(x)为区间[0,1]上的非负连续函数.证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
设n阶方阵A的,n个特征值全为0,则().
若三阶方阵,试求秩(A).
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
设三阶方阵A,B满足A-1BA=6A+BA,且A=,则B=________。
随机试题
科学管理理论的代表人物主要有( )
证明:当x>0时
设y=f(x)可导,则f(x-2h)-f(x)等于().
对矫形器的治疗作用描述不正确的是
患者,男,25岁。2天前淋雨受凉后出现寒战,高热,自觉胸痛,咳黄白黏痰,肺部查体可见左肺下部呼吸音减低,可闻及支气管呼吸音。应考虑的诊断是
个人贷款的特征有()。
7号信令系统中,选择并确定链路和路由,将信息通过可用路由和链路进行传输的是()。
某机主存容量为1MB,两路组相连方式(每组仅有两块)的Cache容量为64KB;每个数据块为256字节。CPU要顺序访问的地址为20124H、58100H、60140H和60138H等4个主存字节单元中的数。已知访问开始前第2组(组号为1)的地址阵列内
帕累托最优,指这样一种社会状态:对于任何人来说,如果不使其他某个(或某些)人境况变坏,他的情况就不可能变好。如果一种变革能使至少有一人的境况变好,同时没有其他人境况因此变坏,则称这一变革为帕累托变革。以下各项都符合题干的断定。除了:
A、Becausethetravelagentdoesenoughvolumeofbusiness.B、Becausepassengerstrustthetravelagent.C、Becausepassengersask
最新回复
(
0
)