首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n维向量组A:a1,a2,…,an,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
设有n维向量组A:a1,a2,…,an,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
admin
2021-02-25
73
问题
设有n维向量组A:a
1
,a
2
,…,a
n
,证明它们线性无关的充分必要条件是:任一n维向量都可由它们线性表示.
选项
答案
充分性([*]):若任一n维向量都可由a
1
,a
2
,…,a
n
线性表示,则n维单位坐标向量e
1
,e
2
,…,e
n
能由a
1
,a
2
,…,a
n
线性表示,则R(e
1
,e
2
,…,e
n
)≤R(a
1
,a
2
,…,a
n
),而R(e
1
,e
2
,…,e
n
)=n,R(a
1
,a
2
,…,a
n
)≤n,所以R(a
1
,a
2
,…,a
n
)=n,即向量组a
1
,a
2
,…,a
n
线性无关. 必要性([*]):任给一n维向量b,则n+1个向量a
1
,a
2
,…,a
n
,b线性相关,而a
1
,a
2
,…,a
n
线性无关,所以向量b可由向量a
1
,a
2
,…,a
n
线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/Y484777K
0
考研数学二
相关试题推荐
设z=f(2x一y)+g(x,xy),其中函数f(t)二阶可导,g(u,υ)具有连续二阶偏导数,求
设A,B是n阶可逆矩阵,且A~B,则①A-1~B-1;②AT~BT;③A*~B*;④AB~BA.其中正确的个数是()
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解
依题意,如右图所示,D为右半单位圆,且关于x轴[*]
设3维向量组α1,α2线性无关,β1,β2线性无关.(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;(Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
设f(x)在[a,b]上连续,在(a,b)内可导,且试证:对任意实数k,在(a,b)内存在一点ξ,使得
(11)设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量.(Ⅱ)求矩阵A.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为____________.
设3阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P一1AP=__________.
随机试题
捐赠进口汽车入户所需资料包括_______。
无可奈何花落去,________。(宋.晏殊《浣溪沙》)
男性,34岁,2个月来无痛性颈淋巴结肿大,间断发热1个多月。查体:脾肋下4cm。如果颈部淋巴结活检为淋巴细胞、浆细胞、中性粒细胞、嗜酸粒细胞及中等量R-S细胞混同存在,最可能的诊断为A.淋巴细胞为主型B.淋巴细胞耗竭型C.结节硬化型D.混合细
运动机械零部件故障检测的重点包括()。
企业在进行现金清查时,查出现金溢余,并将溢余数记入“待处理财产损溢”科目。后经进一步核查,无法查明原因,经批准后,正确的会计处理方法是()。
K公司是一家机械制造企业,生产多种规格的厨房设备,按照客户订单要求分批组织生产。各种产品均需经过两个步骤加工,第一车间为机械加工车间,第二车间为装配车间。本月生产的601号和701号订单的有关资料如下:(1)批号601生产甲产品;6月底第一车间在产品
下列各项中,属于能导致一定法律关系产生、变更或消灭的行为的有()。
南疆在保障和改善民生方面,要紧紧抓住哪两个关键?
试述宋代理学产业的社会背景及主要内容。
(2013年单选40)元朝上都、大都所属蒙古人、色目人与汉人相犯的案件,普通司法机关无权管辖,须由专门机构审理裁决。该专门机构是()。
最新回复
(
0
)