首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,-2,4,0)T,c为任意。记B=(α3,α2,α1,β-α4),求方程组Bx=α1-α2的通解。
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,-2,4,0)T,c为任意。记B=(α3,α2,α1,β-α4),求方程组Bx=α1-α2的通解。
admin
2018-11-16
48
问题
设4阶矩阵A=(α
1
,α
2
,α
3
,α
4
),方程组Ax=β的通解为(1,2,2,1)
T
+c(1,-2,4,0)
T
,c为任意。记B=(α
3
,α
2
,α
1
,β-α
4
),求方程组Bx=α
1
-α
2
的通解。
选项
答案
首先AX=β的通解为(1,2,2,1)
T
+c(1,-2,4,0)
T
可得到下列讯息:①Ax=0的基础解系包含1个解,即4-r(A)=1,得r(A)=3,即r(α
1
,α
2
,α
3
,α
4
)=3。 ②(1,2,2,1)
T
是Ax=β解,即α
1
+2α
2
+2α
3
+α
4
=β。 ③(1,-2,4,0)
T
是Ax=0的解,即α
1
-2α
2
+4α
3
=0。α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)=2。 显然B(0,-1,1,0)
T
=α
1
-α
2
,即(0,-1,1,0)
T
是Bx=α
1
-α
2
的一个解。 由②,B=(α
3
,α
2
,α
1
,β-α
4
)=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
),于是r(B)=r(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)=r(α
1
,α
2
,α
3
)=2。 则Bx=0的基础解系包含解的个数为4-r(B)=2个,α
1
-2α
2
+4α
3
=0说明(4,-2,1,0)
T
是Bx=0的解;又从B=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)容易得到B=(-2,-2,-1,1)
T
=0,说明(-2,-2,-1,1)
T
也是Bx=0的解,于是(4,-2,1,0)
T
和(-2,-2,-1,1)
T
构成Bx=0的基础解系。 Bx=α
1
-α
2
的通解为:(0,-1,1,0)
T
+C
1
(4,-2,1,0)
T
+C
2
(-2,-2,-1,1)
T
,C
1
,C
2
任意。
解析
转载请注明原文地址:https://kaotiyun.com/show/Y8W4777K
0
考研数学三
相关试题推荐
设A是三阶实对称矩阵,r(A)=1,A2一3A一0,设(1,1,一1)T为A的非零特征值对应的特征向量.求A的特征值;
设矩阵有一个特征值为3.求可逆矩阵P,使得(AP)T(AP)为对角矩阵.
袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2个,每次取1个,定义两个随机变量如下:就下列两种情况,求(X,Y)的联合分布律:第一次抽取后不放回.
设X,Y的概率分布为,且P(XY=0)=1.求(X,Y)的联合分布;
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设fn(x)=x+x2+…+xn(n≥2).证明方程fn(x)=1有唯一的正根xn;
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(b)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.证明:|f(c)|≤2a+.
设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X—Y不相关的充分必要条件为().
设数列{xn}与{yn}满足=0,则下列判断正确的是()
设函数f(χ)在(0,+∞)上可导,f(0)=0,且其反函数为g(χ).若∫0f(χ)g(t)dt=χ2eχ,求f(χ)=_______.
随机试题
A、Whetherthepracticeshouldbeallowedtocontinueinfuture.B、Whetherthereshouldbeaminimumagelimitforexecution.C、W
A.碘酊B.过氧乙酸C.戊二醛D.漂白粉E.乙醇胃镜的消毒可采用
治疗温热病邪入血分,发斑,神昏,壮热。宜选用
某公司某项目(以下简称工程),总投资为768万元,其中设备投资为370万元,土建及其他投资为398万元。公司于2001年9月27日办理了该工程的《村镇规划选址意见书》,2002年2月8日开始办理土地审批手续。2001年11月,公司将工程发包给自称是挂靠某建
2015年1月1日,某地方政府拟采购A物资。在实施招标采购过程中,甲公司向该地方政府提供的生产资质为去年非法取得。在采购执行过程中,由于其他原因,该地方政府对该采购事项予以废标。要求:根据上述资料,回答下列问题。该地方政府的预算应由()批准。
下列选项中,关于商业银行从事理财产品销售活动的说法,正确的是()。
某小学六(3)班是全校有名的乱班,上课纪律混乱,打架成风。班上有一名“在野学生领袖”,喜好《水浒》人物,爱打抱不平,常常“为朋友两肋插刀”。打架时,只要他一挥手,其他人就蜂拥而上。班上正气不能抬头,班干部显得软弱无力,一全班同学的学习成绩逐步下降。如何
foodsecurity
Areyoufacingasituationthatlooksimpossibletofix? In1969,thepollutionwasterriblealongtheCuyahogaRivernearC
EuropeanimmigrantstoColonialAmericabroughtwiththemtheirculture,traditionsandphilosophyabouteducation.Manyof【S1】_
最新回复
(
0
)