首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,-2,4,0)T,c为任意。记B=(α3,α2,α1,β-α4),求方程组Bx=α1-α2的通解。
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,-2,4,0)T,c为任意。记B=(α3,α2,α1,β-α4),求方程组Bx=α1-α2的通解。
admin
2018-11-16
42
问题
设4阶矩阵A=(α
1
,α
2
,α
3
,α
4
),方程组Ax=β的通解为(1,2,2,1)
T
+c(1,-2,4,0)
T
,c为任意。记B=(α
3
,α
2
,α
1
,β-α
4
),求方程组Bx=α
1
-α
2
的通解。
选项
答案
首先AX=β的通解为(1,2,2,1)
T
+c(1,-2,4,0)
T
可得到下列讯息:①Ax=0的基础解系包含1个解,即4-r(A)=1,得r(A)=3,即r(α
1
,α
2
,α
3
,α
4
)=3。 ②(1,2,2,1)
T
是Ax=β解,即α
1
+2α
2
+2α
3
+α
4
=β。 ③(1,-2,4,0)
T
是Ax=0的解,即α
1
-2α
2
+4α
3
=0。α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)=2。 显然B(0,-1,1,0)
T
=α
1
-α
2
,即(0,-1,1,0)
T
是Bx=α
1
-α
2
的一个解。 由②,B=(α
3
,α
2
,α
1
,β-α
4
)=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
),于是r(B)=r(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)=r(α
1
,α
2
,α
3
)=2。 则Bx=0的基础解系包含解的个数为4-r(B)=2个,α
1
-2α
2
+4α
3
=0说明(4,-2,1,0)
T
是Bx=0的解;又从B=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)容易得到B=(-2,-2,-1,1)
T
=0,说明(-2,-2,-1,1)
T
也是Bx=0的解,于是(4,-2,1,0)
T
和(-2,-2,-1,1)
T
构成Bx=0的基础解系。 Bx=α
1
-α
2
的通解为:(0,-1,1,0)
T
+C
1
(4,-2,1,0)
T
+C
2
(-2,-2,-1,1)
T
,C
1
,C
2
任意。
解析
转载请注明原文地址:https://kaotiyun.com/show/Y8W4777K
0
考研数学三
相关试题推荐
设证明A可对角化;
设随机变量X,Y同分布,X的密度为f(x)=设A={X>a)与B={Y>a)相互独立,且P(A+B)=.求:
设二维随机变量(X,Y)的联合密度为f(x,y)=求X,Y的边缘密度,问X,Y是否独立?
设α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=r(B)=2.求方程组(Ⅰ)的基础解系;
设X~N(μ,σ2),其分布函数为F(x),对任意实数a,讨论F(一a)+F(a)与1的大小关系.
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为[a2f(a)一f(1)].若f(1)=,求:f(x);
f(x1,x2,x3,x4)=XTAX的正惯性指数是2,且A2—2A=0,该二次型的规范形为________.
已知F(x),g(x)连续可导,且f’(x)=g(x),g’(x)=f(x)+φ(x),其中φ(x)为某已知连续函数,g(x)满足微分方程g’(x)-xg(x)=cosx+φ(x),求不定积分∫xf"(x)dx.
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+),)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意x,f’(x)都存在,并求f(x)。
设f(x)=,讨论函数f(x)的连续性,若有间断点,指明其类型.
随机试题
下列哪项不是七厘散的功效
某孕妇现孕30周,长时间仰卧后,出现血压下降表现,主要原因是
某城市房地产交易中,卖方、买方应缴纳的税费分别为正常成交价格的6%、3%,某宗房地产交易中买方付给卖方2500元/m2,应缴纳的税费均由买方负担,则该宗房地产的正常成交价格为()元/m2。
A股账户按持有人可以分为:自然人证券账户、( )、证券公司和基金管理公司等机构证券账户。
在组织中消除了各部门之间的界限、国内业务与跨国业务的界限、不同层次工作之间的界限,以及组织与其客户和供应商之间界限的组织,这是()的特点。
试述批发业开展物流配送的优势。
国企薪酬制度存在的问题,主要在于与业绩分离缺乏效率、与市场_____难言公平,按劳分配原则一定程度上被_____。科学、规范、有弹性、敢晒在阳光下的薪酬评价体系,才是改革真目标。依次填入画横线部分最恰当的一项是()。
变换积分为极坐标下的二次积分∫01dxf(x,y)dy=________.
Contrary______whatpeoplegenerallybelieve,men,notwomen,needencouragementmore.
A、Asia.B、Africa.C、Europe.D、LatinAmerican.A
最新回复
(
0
)