首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,-2,4,0)T,c为任意。记B=(α3,α2,α1,β-α4),求方程组Bx=α1-α2的通解。
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,-2,4,0)T,c为任意。记B=(α3,α2,α1,β-α4),求方程组Bx=α1-α2的通解。
admin
2018-11-16
44
问题
设4阶矩阵A=(α
1
,α
2
,α
3
,α
4
),方程组Ax=β的通解为(1,2,2,1)
T
+c(1,-2,4,0)
T
,c为任意。记B=(α
3
,α
2
,α
1
,β-α
4
),求方程组Bx=α
1
-α
2
的通解。
选项
答案
首先AX=β的通解为(1,2,2,1)
T
+c(1,-2,4,0)
T
可得到下列讯息:①Ax=0的基础解系包含1个解,即4-r(A)=1,得r(A)=3,即r(α
1
,α
2
,α
3
,α
4
)=3。 ②(1,2,2,1)
T
是Ax=β解,即α
1
+2α
2
+2α
3
+α
4
=β。 ③(1,-2,4,0)
T
是Ax=0的解,即α
1
-2α
2
+4α
3
=0。α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)=2。 显然B(0,-1,1,0)
T
=α
1
-α
2
,即(0,-1,1,0)
T
是Bx=α
1
-α
2
的一个解。 由②,B=(α
3
,α
2
,α
1
,β-α
4
)=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
),于是r(B)=r(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)=r(α
1
,α
2
,α
3
)=2。 则Bx=0的基础解系包含解的个数为4-r(B)=2个,α
1
-2α
2
+4α
3
=0说明(4,-2,1,0)
T
是Bx=0的解;又从B=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)容易得到B=(-2,-2,-1,1)
T
=0,说明(-2,-2,-1,1)
T
也是Bx=0的解,于是(4,-2,1,0)
T
和(-2,-2,-1,1)
T
构成Bx=0的基础解系。 Bx=α
1
-α
2
的通解为:(0,-1,1,0)
T
+C
1
(4,-2,1,0)
T
+C
2
(-2,-2,-1,1)
T
,C
1
,C
2
任意。
解析
转载请注明原文地址:https://kaotiyun.com/show/Y8W4777K
0
考研数学三
相关试题推荐
设A为可逆的实对称矩阵,则二次型XTAX与XTA一1X().
y=上的平均值为________.
设函数y=y(x)满足△y=△x+0(△x),且y(1)=1,则∫01y(x)dx=________.
[*]
设(X,Y)的联合概率密度为.f(x,y)=求:(X,Y)的边缘密度函数;
问a,b,c取何值时,(Ⅰ),(Ⅱ)为同解方程组?
向量组α1,αs线性无关的充要条件是().
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设A=E一ααT,其中α为n维非零列向量.证明:A2=A的充分必要条件是α为单位向量;
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,试证:对任意给定的正数a,b,在(0,1)内存在不同的点ξ,η,使=a+b.
随机试题
肿瘤免疫监视中,主要的细胞免疫执行者是
A.递氢作用B.转氨作用C.转酮醇作用D.转酰基作用CoASH作为辅酶参与
短暂性脑缺血发作的特点是
在日本血吸虫生活史中下面哪项是错误的
患儿,男性,5岁。高热1天,腹泻6~7次,为黏液性脓血便,腹痛伴里急后重,反复惊厥,逐渐出现昏睡、神志不清。病前吃过未洗的黄瓜,诊断为细菌性痢疾。其临床类型属于
张大、张二和张三系兄弟,父母早亡。三人共同继承了父母在A县的房屋共五间,房屋的产权证明,法定继承公证书等由张三保管。由于三人均在B城市生活工作,没有在老家居住。5年后,张三由于生意失败,急需资金周转,便将老家五间房屋转卖给位于C城的生意伙伴崔某。不久,张二
重要工程的单桩承载力宜通过现场静载试验确定,在同一条件下试桩数量不宜少于总桩数的1%,并不少于3根。()
把心理学作为一门独立的学科,是德国的________创立的第一个________实验室。
材料1978年改革开放以来,我国国民经济保持持续快速健康发展,现代化建设事业稳步推进,综合国力和国际竞争力显著提高,人民生活总体上达到小康水平。从1978年到2007年,我国国内生产总值由3645亿元增长到24.95万亿元,年均实际增长9.8%
A、Thewomandoesmuchexercise.B、Themandoesmuchexercise.C、Thewomanalwaysgetsupveryearly.D、Themanliftsweightseve
最新回复
(
0
)