首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,+∞)内二阶可导,且在x=1处与曲线y=x3一3相切,f(x)在(0,+∞)内与曲线y=x3一3有相同的凹向,求方程f(x)=0在(1,+∞)内实根的个数.
设f(x)在区间[0,+∞)内二阶可导,且在x=1处与曲线y=x3一3相切,f(x)在(0,+∞)内与曲线y=x3一3有相同的凹向,求方程f(x)=0在(1,+∞)内实根的个数.
admin
2019-02-26
31
问题
设f(x)在区间[0,+∞)内二阶可导,且在x=1处与曲线y=x
3
一3相切,f(x)在(0,+∞)内与曲线y=x
3
一3有相同的凹向,求方程f(x)=0在(1,+∞)内实根的个数.
选项
答案
由y’=3x
2
, y’(1)=3,及曲线y=f(x)与y=x
3
一3相切可知,f’(1)=3, f(1)=y(1)=一2. 由曲线y=f(x)与y=x
3
一3在(0,+∞)内有相同的凹向,以及y’’=6x>0,可知, f’’(x)>0,x∈(0,+∞). 由台劳公式 [*] 即存在M>0,当x
0
>M时,使得f(x
0
)>0. 于是,f(x)在[1,x
0
]上连续,且f(1)=-2<0,f(x
0
)>0.由零值定理,在(1,x
0
)内至少存在一点ξ,使f(ξ)=0. 由f’’(x)>0,x∈(0,+∞),可知在(0,+∞)内f’(x)单调增加. 再由f’(x)>f’(0)=0,知f(x)在(0,+∞)内单调增加,故f(x)=0在(0,+∞)内仅 有一个根.
解析
由f(x)二阶可导及台劳公式可得f(x)的解析式,然后用零值定理.
若f
(n)
(x)>0,x∈(a,b),则f
(n-1)
(x)在(a,b)内单调增加.
转载请注明原文地址:https://kaotiyun.com/show/YT04777K
0
考研数学一
相关试题推荐
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解;则秩(A
在以下的矩阵中,相似的矩阵为()其中a,b,c均非零.
设R3的两组基为:α1=(1,1,1)T,α2=(0,1,1)T,α3=(0,0,1)T;β1=(1,0,1)T,β2=(0,1,-1)T,β3=(1,2,O)T,求α1,α2,α3到β1,β2,β3的过渡矩阵C,并求γ=(-1,2,1)T在基β1,β
已知A=(α1,α2,α3,α4)是四阶矩阵,α1,α2,α3,α4是四维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,-2,4,0)T,又B=(α3,α2,α1,β-α4),求方程组Bx=3α1+5α2-α3的通解。
设A为三阶实对称矩阵,如果二次曲面方程(x,y,z)A=1在正交变换下的标准方程的图形如图所示,则A的正特征值个数为()
设f(x)在[a,b]连续,在(a,b)可导,f(a)=f(b),且f(x)不恒为常数,求证:在(a,b)内存在一点ξ,使得f’(ξ)>0.
求柱面x2+y2=ax含于球面x2+y2+z2=a2内的曲面面积S,其中a>0为常数.
求方程y(4)一y"=0的一个特解,使其在x→0时与x3为等价无穷小.
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
设f(x),g(x)在点x=0的某邻域内连续,且当x→0时f(x)与g(x)为等价无穷小量,则当x→0时,是的()
随机试题
《秋兴八首(其一)》所悲之秋的内容有()
Moneyisusedforbuyingorsellinggoods,formeasuringvalueandforstoringwealth.However,inprimitivesocietiesasystem
中华人民共和国民法典,已于2020年5月28日在第十三届全国人民代表大会第三次会议通过。国家主席习近平签署第45号主席令予以公布。关于民法典,下列选项正确的是()
孕妇羊水生化测定,反映胎儿肾成熟度的指标是
口腔流行病学研究方法没有
根据《刑事诉讼法》及司法解释的规定,下列关于辩护人的表述中正确的是:()
地铁车站施工准备阶段质量控制内容有()。
债权债务明细分类账一般采用( )。
史学界普遍认为:1861年改革是俄国历史上的重要转折点。得出这一认识的主要依据是()。
Communicationisadynamicprocesswiththeinteractingcomponentsofsending,receivingandfeedback.Nonverbalcuesmayprovid
最新回复
(
0
)