首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,+∞)内二阶可导,且在x=1处与曲线y=x3一3相切,f(x)在(0,+∞)内与曲线y=x3一3有相同的凹向,求方程f(x)=0在(1,+∞)内实根的个数.
设f(x)在区间[0,+∞)内二阶可导,且在x=1处与曲线y=x3一3相切,f(x)在(0,+∞)内与曲线y=x3一3有相同的凹向,求方程f(x)=0在(1,+∞)内实根的个数.
admin
2019-02-26
47
问题
设f(x)在区间[0,+∞)内二阶可导,且在x=1处与曲线y=x
3
一3相切,f(x)在(0,+∞)内与曲线y=x
3
一3有相同的凹向,求方程f(x)=0在(1,+∞)内实根的个数.
选项
答案
由y’=3x
2
, y’(1)=3,及曲线y=f(x)与y=x
3
一3相切可知,f’(1)=3, f(1)=y(1)=一2. 由曲线y=f(x)与y=x
3
一3在(0,+∞)内有相同的凹向,以及y’’=6x>0,可知, f’’(x)>0,x∈(0,+∞). 由台劳公式 [*] 即存在M>0,当x
0
>M时,使得f(x
0
)>0. 于是,f(x)在[1,x
0
]上连续,且f(1)=-2<0,f(x
0
)>0.由零值定理,在(1,x
0
)内至少存在一点ξ,使f(ξ)=0. 由f’’(x)>0,x∈(0,+∞),可知在(0,+∞)内f’(x)单调增加. 再由f’(x)>f’(0)=0,知f(x)在(0,+∞)内单调增加,故f(x)=0在(0,+∞)内仅 有一个根.
解析
由f(x)二阶可导及台劳公式可得f(x)的解析式,然后用零值定理.
若f
(n)
(x)>0,x∈(a,b),则f
(n-1)
(x)在(a,b)内单调增加.
转载请注明原文地址:https://kaotiyun.com/show/YT04777K
0
考研数学一
相关试题推荐
设μn收敛,则下列级数必收敛的是().
设A是m×n阶矩阵,则下列命题正确的是().
函数f(x)=的间断点()
试用配方法化二次型f(x1,x2,x3)=2x12+3x22+x32+4x1x2-4x1x3-8x2x3为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及止、负惯性指数。
设A=,已知线性方程组Ax=b存在两个不同的解。(Ⅰ)求λ,a;(Ⅱ)求方程组Ax=b的通解。
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α1=2α2-α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
(2004年)欧拉方程的通解为__________。
设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,x2<y<}上服从均匀分布,令(Ⅰ)写出(X,Y)的概率密度;(Ⅱ)问U与X是否相互独立?并说明理由;(Ⅲ)求Z=U+X的分布函数F(z)。
设二维随机变量(X,Y)服从正态分布N(μ,μ;σ2,σ2;0),则E(XY2)=________。
(1990年)求微分方程y"+4y’+4y=e-2x的通解(一般解).
随机试题
中国素称“礼义之邦”,把礼的重要作用说成是“经国家,定社稷,序民人,利后嗣”的经典是_____。
领导观念的重要作用。
A.1.5~0.2cmB.0.2~0.3cmC.0.3~0.5cmD.0.45~0.55cmE.≤0.6cm正常胰腺主胰管内径不超过
镁和铝分别与等浓度、等体积的过量稀硫酸反应,产生气体的体积(V)与时间(t)关系如右图。反应中镁和铝的()。
下列关于侵犯公民生命健康权的赔偿计算标准的说法不正确的是( )。
甲租用乙的地种粮食,今年共收获3000斤粮食,包括大米、玉米和红薯。其中玉米800斤,红薯600斤。如果除租金之外,甲每年须将收获的大米的N%给乙作为回报,同时将红薯超过粮食总重的15%的部分也按照N%给乙作为回报,甲今年一共给乙210斤粮食,那么N%为多
我们今天太多地在强调知识的广博,很少强调思维的深度。思考以前是时间维度的,现在是空间维度的。海南,桂林,南极,北极,每个人都能跳跃性地和你说一大堆,但就一点谈深的功夫,比如谈你的家乡、你的社区,就很缺乏。这和我们阅读的习惯有关系。我们每个人都是“知道分子”
2022年6月21日,中共中央、国务院、中央军委决定,给()颁发二级航天功勋奖章,授予()“英雄航天员”荣誉称号并颁发三级航天功勋奖章。
求微分方程y’’+2y’-3y=e-3x的通解.
HarryHoudini,whodiedin1927,wastheentertainmentphenomenonoftheragtimeera.Hecouldescapefromchainsandpadlocks,
最新回复
(
0
)