首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)=(x2一x—2)∣x3-x∣不可导点的个数是( ).
函数f(x)=(x2一x—2)∣x3-x∣不可导点的个数是( ).
admin
2019-04-05
47
问题
函数f(x)=(x
2
一x—2)∣x
3
-x∣不可导点的个数是( ).
选项
A、3
B、2
C、1
D、0
答案
B
解析
f(x)为含绝对值函数的函数可利用命题1.2.2.1~命题1.2.2.5求解.
解一 仅(B)入选.下用命题1.2.2.4求之.f(x)=(x一2)(x+1)∣x∣∣x—l∣.∣x+1∣,其不可导点只能在一1,0,1中选择.
当x=一1时,设g(x)=(x一2)(x+1)∣x∣∣x一1∣,g(x)可导且g(一1)=0,因此可导.
当x=0时,设g(x)=(x一2)(x+1)∣x—l∣,因为g(0)=一2≠0,所以不可导.
当x=l时,设g(x)=(x一2)(x+1)∣x∣∣x+1∣,因为g(1)=一4≠0,所以不可导.
解二 令g(x)=x
2
一x一2=(x一2)(x+1),φ(x)=x
3
一x=x(x+1)(x—1).φ(x)的一次因式有h
1
(x)=x,h
2
(x)=x+1,h
3
(x)=x-1.而g(x)没有一次因式h
1
(x)=x,h
3
(x)=x—1.令h
1
(x)=x=0,h
3
(x)=x一1=0.知0,1为f(x)的不可导点.
又因φ(x)有一次因式h
2
(x)=x+1,而g(x)也有.由命题1.2.2.5知,令h
2
(x)=x+1=0即x=一l为f(x)的可导的点.因而f(x)的不可导点的个数为2.仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/YWV4777K
0
考研数学二
相关试题推荐
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在η∈(0,2),使f(n)=f(0);
设y=∫0χdt+1,求它的反函数χ=φ(y)的二阶导数及φ〞(1).
计算定积分
求齐次线性方程组的基础解系.
求极限,其中n为给定的自然数.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(A)=f(B)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
设连续函数f(χ)满足:∫01[f(χ)+χf(χt)]dt与χ无关,求f(χ).
[2011年]=__________.
[2011年]设函数y=y(x)由参数方程确定.求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点.
(2003年试题,六)设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.(1)试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的
随机试题
温疟的治疗方法是()。
34岁,G3Pl,孕36周,头痛,视物不清,面部浮肿2天,今晨头痛加剧,恶心,呕吐3次,就诊时突然牙关紧闭,双眼上翻,面部肌肉抽动,四肢肌肉强直,随后剧烈抽搐,约1分钟渐清醒,即测血压195/120mmHg,胎心120次/分,有不规则宫缩,肛查:宫口未开,
根据我国2004年修订的《对外贸易法》的规定,下列哪些选项是正确的?
在财务评价的价格体系中,财务生存能力分析原则上应采用()。
保证方式没有约定或约定不明确的,按( )承担担保责任。
不能给企业带来未来效益的,没有交换价值或使用价值的物品,则不作为资产确认。()
下列不属于保荐机构及其代表人履行保荐职责时对发行人行使的权利的是( )。
甲公司2019年1月1日购入其母公司持有的乙公司70%,有表决权的股份,用银行存款支付2800万元,合并当日乙公司相对于最终控制方而言的所有者权益账面价值为3800万元,假定最终控制方合并报表未确认商誉。2019年6月1日乙公司宣告分派2016年度现金
(2015·吉林)下列体现客观唯心主义思想的是()
下列情形中,当事人必须先申请复议,对复议决定不服的才能提起行政诉讼的是()。
最新回复
(
0
)