首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)=(x2一x—2)∣x3-x∣不可导点的个数是( ).
函数f(x)=(x2一x—2)∣x3-x∣不可导点的个数是( ).
admin
2019-04-05
58
问题
函数f(x)=(x
2
一x—2)∣x
3
-x∣不可导点的个数是( ).
选项
A、3
B、2
C、1
D、0
答案
B
解析
f(x)为含绝对值函数的函数可利用命题1.2.2.1~命题1.2.2.5求解.
解一 仅(B)入选.下用命题1.2.2.4求之.f(x)=(x一2)(x+1)∣x∣∣x—l∣.∣x+1∣,其不可导点只能在一1,0,1中选择.
当x=一1时,设g(x)=(x一2)(x+1)∣x∣∣x一1∣,g(x)可导且g(一1)=0,因此可导.
当x=0时,设g(x)=(x一2)(x+1)∣x—l∣,因为g(0)=一2≠0,所以不可导.
当x=l时,设g(x)=(x一2)(x+1)∣x∣∣x+1∣,因为g(1)=一4≠0,所以不可导.
解二 令g(x)=x
2
一x一2=(x一2)(x+1),φ(x)=x
3
一x=x(x+1)(x—1).φ(x)的一次因式有h
1
(x)=x,h
2
(x)=x+1,h
3
(x)=x-1.而g(x)没有一次因式h
1
(x)=x,h
3
(x)=x—1.令h
1
(x)=x=0,h
3
(x)=x一1=0.知0,1为f(x)的不可导点.
又因φ(x)有一次因式h
2
(x)=x+1,而g(x)也有.由命题1.2.2.5知,令h
2
(x)=x+1=0即x=一l为f(x)的可导的点.因而f(x)的不可导点的个数为2.仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/YWV4777K
0
考研数学二
相关试题推荐
已知3阶矩阵A的逆矩阵为,试求伴随矩阵A*的逆矩阵.
求极限
计算下列反常积分:(1)∫-∞+∞(|x|+x)e-|x|dx;
设函数f(x)连续,且∫0xtf(2x一t)dt=已知f(1)=1,求∫12f(x)dx的值.
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
设f(x)是连续函数,且,则F’(x)等于
(2009年)设A,P均为3阶矩阵,PT为P的转置矩阵.且PTAP=若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QTAQ为
[2018年]=__________。
[2012年]曲线y=x2+x(x<0)上曲率为√2/2的点的坐标是_________.
[2011年]设函数y=y(x)由参数方程确定.求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点.
随机试题
男性,55岁。有慢性支气管炎病史10多年,1周来出现高热,咳嗽、咳痰加重,痰液黏稠呈砖红色胶冻状。该患者最可能的诊断是
下列哪项不是道地药材
牙挺使用的原则中不包括
某箱形基础埋置深度d=7m,地下水位距地表1m,地基土的水上容重为18kN/m3,水下容重为18.7kN/m3,采用全补偿基础8m×20m,则上部结构及基础总重为( )。
在双缝干涉实验中,在给定入射单色光的情况下,用一片能通过光的薄介质片(不吸收光线)将双缝装置中的下面一个缝盖住,则屏幕上干涉条纹的变化情况是:
基金份额持有人必须承担的义务包括()。
(2010年真题)下列关于法律制裁的表述,能够成立的是
Thetermauthorityreferstotherightsinherentinamanagerialpositiontogiveordersandexpecttheorderstobefollowed.A
FilmExchangesinAmerica’sEarlyMovieIndustry1.Motionpictureswereexhibitedtothepublicinthelate1800s,thoughthe
Theterm"Americandream"iswidelyusedtoday.Butwhatexactlydoesthisconceptmean?Theterm"Americandream"begantobew
最新回复
(
0
)