首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)=(x2一x—2)∣x3-x∣不可导点的个数是( ).
函数f(x)=(x2一x—2)∣x3-x∣不可导点的个数是( ).
admin
2019-04-05
36
问题
函数f(x)=(x
2
一x—2)∣x
3
-x∣不可导点的个数是( ).
选项
A、3
B、2
C、1
D、0
答案
B
解析
f(x)为含绝对值函数的函数可利用命题1.2.2.1~命题1.2.2.5求解.
解一 仅(B)入选.下用命题1.2.2.4求之.f(x)=(x一2)(x+1)∣x∣∣x—l∣.∣x+1∣,其不可导点只能在一1,0,1中选择.
当x=一1时,设g(x)=(x一2)(x+1)∣x∣∣x一1∣,g(x)可导且g(一1)=0,因此可导.
当x=0时,设g(x)=(x一2)(x+1)∣x—l∣,因为g(0)=一2≠0,所以不可导.
当x=l时,设g(x)=(x一2)(x+1)∣x∣∣x+1∣,因为g(1)=一4≠0,所以不可导.
解二 令g(x)=x
2
一x一2=(x一2)(x+1),φ(x)=x
3
一x=x(x+1)(x—1).φ(x)的一次因式有h
1
(x)=x,h
2
(x)=x+1,h
3
(x)=x-1.而g(x)没有一次因式h
1
(x)=x,h
3
(x)=x—1.令h
1
(x)=x=0,h
3
(x)=x一1=0.知0,1为f(x)的不可导点.
又因φ(x)有一次因式h
2
(x)=x+1,而g(x)也有.由命题1.2.2.5知,令h
2
(x)=x+1=0即x=一l为f(x)的可导的点.因而f(x)的不可导点的个数为2.仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/YWV4777K
0
考研数学二
相关试题推荐
设z=z(x,y)有连续的二阶偏导数并满足①(Ⅰ)作变量替换u=3x+y,v=x+y,以u,v作为新的自变量,变换上述方程;(Ⅱ)求满足上述方程的z(x,y).
计算二重积分,其中D是由x轴,y轴与曲线所围成的区域,a>0,b>0。
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x-t)dtG(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的().
(2009年)设A,P均为3阶矩阵,PT为P的转置矩阵.且PTAP=若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QTAQ为
(2012年试题,二)设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第1行与第2行得矩阵B,则|BA*|__________.
[2018年]若(e2+ax2+bx)1/x2=1,则().
[2018年]已知曲线L:y=x2(x≥0),点0(0,0),点A(0,1).P是L上的动点,S是直线OA与直线AP及曲线L所围图形的面积.若P运动到点(3,4)时沿x轴正向的速度是4,求此时S关于时间t的变化率.
[2018年]设函数f(x)在[0,1]上二阶可导,且∫01f(x)dx=0,则().
[2003年]有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(见图1.3.5.10),容器的底面圆的半径为2m.根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设
[2003年]设三阶方阵A,B满足A2B—A—B=E,其中E为三阶单位矩阵,若A=,则∣B∣=_________.
随机试题
某颅脑损伤病人,神志丧失,呼之不醒,压其眶上神经,出现皱眉、上肢活动,其意识障碍属于
乳香预热变软,烧之微有香气,与水共研能生成()。
如图4—37所示点P沿螺线自外向内运动。它走过的弧长与时间的一次方成正比。关于该点的运动,有以下4种答案,请判断哪一个答案是正确的()。
不适用《企业所得税法》规定的纳税人有( )。
()是全心全意为人民服务的思想基础。
行政诉讼所要解决的争议,是()之间发生的法律争议。
在一项实验中,第一组实验者摄取了大量的人造糖,第二组则没有吃糖。结果发现,吃糖的人比没有吃糖的人认知能力低。这一实验表明,人造糖中所含的某种成份会影响人的认知能力。以下哪项如果为真,最能支持上述结论?
A、Haveanaccount.B、Drawonthisbranch.C、Cashacheck.D、Somethingpersonal.C男士问:我是否有必要在这儿开立账户以方便使用个人支票提现?女士答:如果在同一家银行分支机构就不
Theannualcompanyoutingcould______moreefficientlyifmoreemployeeshadparticipatedinit.
Whatcanbethebesttitleofthepassage?Thestatementthat______isNOTtrue.
最新回复
(
0
)