首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)=(x2一x—2)∣x3-x∣不可导点的个数是( ).
函数f(x)=(x2一x—2)∣x3-x∣不可导点的个数是( ).
admin
2019-04-05
66
问题
函数f(x)=(x
2
一x—2)∣x
3
-x∣不可导点的个数是( ).
选项
A、3
B、2
C、1
D、0
答案
B
解析
f(x)为含绝对值函数的函数可利用命题1.2.2.1~命题1.2.2.5求解.
解一 仅(B)入选.下用命题1.2.2.4求之.f(x)=(x一2)(x+1)∣x∣∣x—l∣.∣x+1∣,其不可导点只能在一1,0,1中选择.
当x=一1时,设g(x)=(x一2)(x+1)∣x∣∣x一1∣,g(x)可导且g(一1)=0,因此可导.
当x=0时,设g(x)=(x一2)(x+1)∣x—l∣,因为g(0)=一2≠0,所以不可导.
当x=l时,设g(x)=(x一2)(x+1)∣x∣∣x+1∣,因为g(1)=一4≠0,所以不可导.
解二 令g(x)=x
2
一x一2=(x一2)(x+1),φ(x)=x
3
一x=x(x+1)(x—1).φ(x)的一次因式有h
1
(x)=x,h
2
(x)=x+1,h
3
(x)=x-1.而g(x)没有一次因式h
1
(x)=x,h
3
(x)=x—1.令h
1
(x)=x=0,h
3
(x)=x一1=0.知0,1为f(x)的不可导点.
又因φ(x)有一次因式h
2
(x)=x+1,而g(x)也有.由命题1.2.2.5知,令h
2
(x)=x+1=0即x=一l为f(x)的可导的点.因而f(x)的不可导点的个数为2.仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/YWV4777K
0
考研数学二
相关试题推荐
求曲线y=的一条切线l,使该曲线与切线l及直线x=0,x=2所围成图形的面积最小.
已知某企业的总收益函数为R(Q)=26Q一2Q2一4Q3,总成本函数为C(Q)=8Q+Q2,其中Q表示产品的产量.求边际收益函数、边际成本函数以及利润最大时的产量.
设f和g为连续可微函数,u=f(x,xy),v=g(x+xy),求.
用变量代换x=cost(0<t<π)化简微分方程(1一x2)y’’一xy’+y=0,并求其满足y|x=0=1,y’|x=0=2的特解.
设函数f(x,y)可微,,求f(x,y).
求下列函数的带皮亚诺余项至括号内所示阶数的麦克劳林公式:(Ⅰ)f(x)=excosx(x3);(Ⅱ)f(x)=(x3).(Ⅲ)f(x)=,其中a>0(x2).
设f(χ)在(a,b)内可导,且χ0∈(a,b)使得又f(χ)>0(<0),f(χ)<0(>0),f(χ)<0(>0)(如图4.13),求证:f(χ)在(a,b)恰有两个零点.
设连续函数f(χ)满足:∫01[f(χ)+χf(χt)]dt与χ无关,求f(χ).
[2012年]设an>0(n=1,2,3,…),Sn=a1+a2+a3+…+an,则数列{Sn}有界是数列{an}收敛的().
[2018年]设A,B为n阶矩阵,记r(X)为矩阵X的秩,(XY)表示分块矩阵,则().
随机试题
Therearemanykindsofbridges.Abridgecanbealog【C1】______astreamoraropeacrossariver.【C2】______somebridgesarever
A.急性腹膜炎B.肥胖C.腹水D.巨大卵巢囊肿腹膨隆,脐膨出提示
下列选项中,病灶可形成空洞的有
关于卡托普利治疗高血压的特点,下列说法错误的是
把特定利率下不同时点上绝对数额不等而经济价值相等的若干资金称为等值资金。影响资金等值的因素有()。
广告的长期性目标是为企业战略目标服务的,其特征是()。
“因地制宜、因陋就简”是许多幼儿教师实践中的一项技巧。这天,张老师在使用硬纸箱、旧报纸等“生活废物”为班上小朋友制作活动道具的过程中灵光一闪,想到如果请孩子们共同参与这项制作,一定能够达到更好的效果。请以“变废为宝”为主题,帮助张老师设计大班主题活动。
19世纪初,拉丁美洲独立战争的主要领导力量是()。
简述教育过程中掌握知识与发展智力的关系。
爱国主义传统内涵十分丰富,包括热爱祖国,矢志不渝;天下兴亡,匹夫有责;维护统一,反对分裂;同仇敌忾,抗御外侮。下列选项中体现“热爱祖国,矢志不渝”的是()
最新回复
(
0
)