首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(见图1.3.5.10),容器的底面圆的半径为2 m.根据设计要求,当以3 m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设
[2003年] 有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(见图1.3.5.10),容器的底面圆的半径为2 m.根据设计要求,当以3 m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设
admin
2019-04-17
53
问题
[2003年] 有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(见图1.3.5.10),容器的底面圆的半径为2 m.根据设计要求,当以3 m
3
/min的速率向容器内注入液体时,液面的面积将以πm
2
/min的速率均匀扩大(假设注入液体前,容器内无液体).
根据t时刻液面的面积,写出t与φ(y)之间的关系式;
选项
答案
液面的面积以πm
2
/min的速率均匀扩大, 因此t时刻液面面积应为π·2
2
+πt,而液面为圆,其面积可易求得为πφ
2
(y),由此可导出t与φ(y)之间的关系式.液体体积可根据旋转体的体积公式用定积分求出,又已知t时刻的液体体积为3t,据此又可建立积分关系式,求导后转化为微分方程求解即可. 设在t时刻,液面的高度为y,则由题设知此时液面的面积为πφ
2
(y)=4π+πt, 从而t=φ
2
(y)一4.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZJV4777K
0
考研数学二
相关试题推荐
设常数α≤α<β≤b,曲线Γ:y=(χ∈[α,β])的孤长为l.(Ⅰ)求证:l=;(Ⅱ)求定积分J=.
设f(x)在[a,b上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξf(x)dx=∫ξbf(x)dx.
求微分方程y2dx+(2xy+y2)dy=0的通解.
曲线y=x+的凹区间是___________.
已知n阶矩阵A的各行元素之和均为零,且r(A)=n一1,则线性方程租AX=0的通解是____________。
某种飞机在机场降落时,为了减少滑行距离,在触地瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来。现有一质量为9000kg的飞机,着陆时的水平速度为700km/h。经测试,减速伞打开后,飞机所受的阻力与飞机的速度成正比(比例系数为k=6.0×1
[2017年]设函数f(u,v)具有二阶连续的偏导数,y=f(ex,cosx),求.
[2017年]∫01dy∫y1dx=_________.
设f(x)连续,且求f(0).
设a1,a2,…,an是互不相同的实数,且求线性方程组AX=b的解.
随机试题
在行政管理中运用法律方法,首先要加强【】
一般来说,对国际市场细分可以遵循下列基本思路()
下列哪些属于稳定细胞
简述委员会组织结构的优缺点。
Paris,21stNovember1783.Therewerehundredsofpeopleinthestreetroundanenormous(巨大的)balloon."Whatisit?"theyasked.
女性,37岁,因突发头痛3小时入院,行头颅CT提示蛛网膜下腔出血。既往无高血压病史
胃内分泌胃泌素的细胞主要是
尊重、信任学生与严格要求学生是教育工作对教师的基本要求。()
享受人群是最确定、最普遍、最完整的社会保险项目是()。
(2003年试题,十二)已知平面上三条不同直线的方程分别为l1:ax+2b+3c=0l2:bx+2cy+3a=0l3:cx+2xy+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0
最新回复
(
0
)