首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(见图1.3.5.10),容器的底面圆的半径为2 m.根据设计要求,当以3 m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设
[2003年] 有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(见图1.3.5.10),容器的底面圆的半径为2 m.根据设计要求,当以3 m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设
admin
2019-04-17
68
问题
[2003年] 有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(见图1.3.5.10),容器的底面圆的半径为2 m.根据设计要求,当以3 m
3
/min的速率向容器内注入液体时,液面的面积将以πm
2
/min的速率均匀扩大(假设注入液体前,容器内无液体).
根据t时刻液面的面积,写出t与φ(y)之间的关系式;
选项
答案
液面的面积以πm
2
/min的速率均匀扩大, 因此t时刻液面面积应为π·2
2
+πt,而液面为圆,其面积可易求得为πφ
2
(y),由此可导出t与φ(y)之间的关系式.液体体积可根据旋转体的体积公式用定积分求出,又已知t时刻的液体体积为3t,据此又可建立积分关系式,求导后转化为微分方程求解即可. 设在t时刻,液面的高度为y,则由题设知此时液面的面积为πφ
2
(y)=4π+πt, 从而t=φ
2
(y)一4.
解析
转载请注明原文地址:https://kaotiyun.com/show/ZJV4777K
0
考研数学二
相关试题推荐
说明下列事实的几何意义:(Ⅰ)函数f(χ),g(χ)在点χ=χ0处可导,且f(χ0)=g(χ0),f′(χ0)=g′(χ0);(Ⅱ)函数)y=f(χ)在点χ=χ0处连续,且有=∞.
位于上半平面向上凹的曲线y=y(x)在点(0,1)处的切线斜率为0,在点(2,2)处的切线斜率为1.已知曲线上任一点处的曲率半径与的乘积成正比,求该曲线方程.
已知齐次线性方程组(I)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
设f(x)在[a,b上连续,且f(x)>0,证明:存在ξ∈(a,b),使得∫aξf(x)dx=∫ξbf(x)dx.
已知A=,a是一个实数.(1)求作可逆矩阵U,使得U-1AU是对角矩阵.(2)计算|A-E|.
求极限
设X和Y是相互独立的且均服从正态分布N(0,)的随机变量,求Z=|X—Y|的数学期望。
从一艘破裂的油轮中渗漏出来的油,在海面上逐渐扩散形成油层.设在扩散的过程中,其形状一直是一个厚度均匀的圆柱体,其体积也始终保持不变.已知其厚度h的减少率与h3成正比,试证明:其半径r的增加率与r3成反比.
用比较判别法判定下列级数的敛散性:
(1999年)设向量组α1=[1,1,1,3]T,α2=[-1,-3,5,1]T,α3=[3,2,-1,p+2]T,α4=[-2.-6,10,p]T.(1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]T用α1,α2,α3,α4线性
随机试题
对冠状循环叙述,正确的是()。
新纹体包括___________和___________。
下列化合物中,不含高能磷酸键的是
关于预激综合征的治疗,不正确的是
浑浊位于角膜基质浅层,呈灰白色,边界不清,有时肉眼不能看清。属于何种瘢痕性角膜浑浊
下列关于体质偏阴者的叙述,正确的是
按照剥离是否符合公司的意愿,剥离可以划分为()。
外商投资旅行社可以经营()。
据目前刚结束的一项对甲乙两市初中学生身高增长情况的监测调查显示,在初中的三年中,甲乙两市的学生的身高平均增长10厘米,其中,甲市的学生平均增长12厘米,乙市的学生平均增长9厘米。如果上述断定是真的,则以下有关被调查学生的断定,哪项也一定是真的?
Alice,______wheretofindthebook,askedhermotherwherethebookWas.
最新回复
(
0
)