首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b). 证明:存在ξi∈(a,b)(i=1,2,…,n),使得1/n1/f’(ξi)=1.
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b). 证明:存在ξi∈(a,b)(i=1,2,…,n),使得1/n1/f’(ξi)=1.
admin
2018-05-21
24
问题
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).
证明:存在ξ
i
∈(a,b)(i=1,2,…,n),使得1/n
1/f’(ξ
i
)=1.
选项
答案
令h=[*],因为f(x)在[a,b]上连续且单调增加,且f(a)=a<b=f(b), 所以f(a)=a<a+h<…<a+(n-1)h<b=f(b),由端点介值定理和函数单调性, 存在a<c
1
<c
2
<…<c
n-1
<b,使得 f(c
1
)=a+h,f(c
2
)=a+2h,…,f(c
n-1
)=a+(n-1)h,再由微分中值定理,得 f(c
1
)-f(a)=f’(ξ
1
)(c
1
-a),ξ
1
∈(a,c
1
), f(c
2
)-f(c
1
)=f’(ξ
2
)(c
2
-c
1
),ξ
2
∈(c
1
,c
2
),… f(b)-f(c
n-1
)=f’(ξ
n
)(b-c
n-1
),ξ
n
∈(c
n-1
,b), [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Ydr4777K
0
考研数学一
相关试题推荐
求微分方程y"一3y’+2y=2xex的通解.
计算积分.
设有一半径为R的球体,P0是此球的表面上的一个定点,球体上任一点的密度与该点到P0距离的平方成正比(比例常数k>0),求球体的重心位置.
已知f(x,y)=sin,则()
将函数f(x)=展开成x的幂级数.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:(1)在开区间(a,b)内g(x)≠0;(2)在开区间(a,b)内至少存在一点ξ,使.
设D:{(x,y)|x2+y≤,x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数.计算二重积分[1+x2+y2]dxdy.
将分解为部分分式的形式为_________
设f(x)在x=0的邻域内二阶连续可导,=2,求曲线y=f(x)在点(0,f(0))处的曲率.
(90年)质点P沿着以AB为直径的圆周,从点A(1,2)运动到点B(3,4)的过程中受变力F作用(见图2.7),F的大小等于点P到原点O之间的距离,其方向垂直于线段Op且与y轴正向的夹角小于,求变力F对质点p所作的功.
随机试题
1/x
下列关于教育储蓄的说法中,正确的是( )。Ⅰ.规模非常小Ⅱ.能办理教育储蓄的投资者范围比较大Ⅲ.规模非常大Ⅳ.只有小学4年级以上的学生才能办理教育储蓄
甲服装公司与乙银行订立合同,约定甲公司向乙银行借款300万元,用于购买进口面料。同时,双方订立抵押合同,约定甲公司以其现有的以及将有的生产设备、原材料、产品为前述借款设立抵押。借款合同和抵押合同订立后,乙银行向甲公司发放了贷款,但未办理抵押登记。有关甲公司
课堂教学中学生讨论是一种信息交流,它可以提高学习效果。这说明信息具有()。
根据下列资料,回答问题。2015年我国非智能手机比上年增长:
设A是n阶可逆矩阵,A是λ的特征值,则(A*)2+E必有特征值__________.
有以下函数 char*fun(char*p) {return p;} 该函数的返回值是______。
Whatcanwelearnaboutthewomanfromthedialogue?
Thenatureofworkischanging.Recenttechnologicaladvances,ashiftfrommanufacturingtoservice-basedorganizations,incr
A、AllanandCatherinewillcometodinnerthatnight.B、AllanandJohnsonwillcometojointhedancingpartythatnight.C、Alla
最新回复
(
0
)