首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b). 证明:存在ξi∈(a,b)(i=1,2,…,n),使得1/n1/f’(ξi)=1.
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b). 证明:存在ξi∈(a,b)(i=1,2,…,n),使得1/n1/f’(ξi)=1.
admin
2018-05-21
31
问题
设f(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<b=f(b).
证明:存在ξ
i
∈(a,b)(i=1,2,…,n),使得1/n
1/f’(ξ
i
)=1.
选项
答案
令h=[*],因为f(x)在[a,b]上连续且单调增加,且f(a)=a<b=f(b), 所以f(a)=a<a+h<…<a+(n-1)h<b=f(b),由端点介值定理和函数单调性, 存在a<c
1
<c
2
<…<c
n-1
<b,使得 f(c
1
)=a+h,f(c
2
)=a+2h,…,f(c
n-1
)=a+(n-1)h,再由微分中值定理,得 f(c
1
)-f(a)=f’(ξ
1
)(c
1
-a),ξ
1
∈(a,c
1
), f(c
2
)-f(c
1
)=f’(ξ
2
)(c
2
-c
1
),ξ
2
∈(c
1
,c
2
),… f(b)-f(c
n-1
)=f’(ξ
n
)(b-c
n-1
),ξ
n
∈(c
n-1
,b), [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Ydr4777K
0
考研数学一
相关试题推荐
(1)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx.(2)计算
微分方程xy’+2y=xlnx满足y(1)=一的解为_________.
设函数f(u)具有二阶连续导数,函数z=f(exsiny)满足方程=(z+1)e2x,若f(0)=0,f’(0)=0,求函数f(u)的表达式.
设三维向量已知向量组α1,α2,α3与β1,β2,β3是等价的.(Ⅰ)求a,b,c.(Ⅱ)求向量组α1,α2,α3的一个极大无关组,并将β1用α1,α2,α3线性表示.
设幂级数anxn在(-∞,+∞)内收敛,其和函数y(x)满足y’’-2xy’-4y=0,且y(0)=0,y’(0)=1.证明:an+2=,n=1,2,3,…;
求极限
设0<x1<1,xn+1=(n=1,2,…).求证:{xn}收敛,并求其极限.
设f(x)是以T为周期的连续函数.(1)证明:f(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k;(2)求(1)中的(3)以[x]表示不超过x的最大整数,g(x)=x-[x],求
一条均匀链条挂在一个无摩擦的钉子上,链条长18m,运动开始时链条一边下垂8m,另一边下垂10m,问整个链条滑过钉子需要多长时间?
设f(x)为非负连续函数,且满足f(x)∫0xf(x-t)dt=sin4x,求f(x)在[0,π/2]上的平均值.
随机试题
WhenIwaswalkingdownthestreettheotherday,Ihappenedto【C1】______asmallbrownleatherpurselyingonthesidewalk.I【C2
患者女性,30岁,撞击后致单纯左肩关节前方脱位,1小时后来医院就诊,X线片未见合并骨折征象。此时应首先采取哪种治疗措施
A.联苯胺B.氯甲醚C.石棉D.砷E.焦炉逸散物我国职业病名单中,列入职业肿瘤,可引起间皮瘤的毒物是
在预防唇腭裂发生的措施中,哪项是错误的
肛门周围脓肿的主要症状是
区域火灾风险评估的评估内容有哪些?
2014年10月20日,甲向乙购买一批原材料,价款为30万元。因乙欠丙30万元,故甲与乙约定由乙签发一张甲为付款人、丙为收款人的商业汇票。乙于当日依约签发汇票并交付给丙,该汇票上未记载付款日期。2014年11月15日,丙向甲提示付款时,甲以乙交货不符合合
随着儿童逐渐长大,他们往往在不考虑行为的外部结果的情况下,采纳身边他人优先考虑的事情和价值标准作为自己的接受他人所推崇的行为,这种现象称为动机的外化。()
近来,微博上流行一句“是中国人就转”的口号,这是用一面澎湃激昂的民族情怀大旗,迎风一展,遮住大众的眼睛,眼花缭乱间,既剥夺民众独立思考的能力,又________他人自由的意志。爱国主义是其廉价外衣,使人跟风盲从是其内在属性,看似强大逻辑的背后,实则是批判的
单纯涎石摘除术适用于()。
最新回复
(
0
)