首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知xOz面曲线L: 求曲面∑上点P(0,0,1)处的切平面与曲面z=x2+y2所围成的立体的体积。
已知xOz面曲线L: 求曲面∑上点P(0,0,1)处的切平面与曲面z=x2+y2所围成的立体的体积。
admin
2016-01-23
42
问题
已知xOz面曲线L:
求曲面∑上点P(0,0,1)处的切平面与曲面z=x
2
+y
2
所围成的立体的体积。
选项
答案
设F(x,y,z)=x
2
+y
2
+1-z,则F’
x
(P)=0,F’
y
(P)=0,F’
z
(P)=-1,故曲面∑的P点处的切平面方程为 0×(x-0)+0×(y-0)-1×(z-1)=0,即z=1. 于是所求立体体积为 V=[*][1-(x
2
+y
2
)]dxdy=[*], 其中D
xy
={(x,y)|x
2
+y
解析
转载请注明原文地址:https://kaotiyun.com/show/DRw4777K
0
考研数学一
相关试题推荐
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设A为n阶矩阵,且A22A-8E=0.证明:r(4E-A)+r(2E+A)=n.
设A为n阶矩阵,且Ak=0,求(E-A)-1.
设n阶矩阵A满足A2+2A-3E=0.求:(1)(A+2E)-1;(2)(A+4E)-1.
设A=,B为三阶非零矩阵,且AB=0,则r(A)=________.
设A是4×3阶矩阵且r(A)=2,B=,则r(AB)=________.
A2-B2=(A+B)(A-B)的充分必要条件是________.
设α1,α2……αn是n个n维向量,且已知a1x1+a2x2+…+anxn=0(*)只有零解.问方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+(αn+α1)xn=0(**)何时只有零解?说明理由;何时有非零解?有非零解时,求
设f(x)=,求f(x)的连续区间及间断点.
某企业做销售某种商品的广告可通过电台及报纸两种方式,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)和报纸广告费用x2(万元)之间的关系如下:R=15+14x1+32x2-8x1x2-2x12-10x22若提供的广告费用为1.5万元
随机试题
构建社会主义和谐社会的指导思想中确定的构建社会主义和谐社会的重点是()
法律发展史上,社会主义法律是新型的法律制度,有着与以往剥削阶级类型法律制度不同的经济基础与阶级本质。我国社会主义法律的本质特征有()
关于滴虫的叙述,下列哪项是错误的
人格包括
2009年10月,甲融资租赁公司(下称甲公司)与乙公司订立一份融资租赁合同。该合同约定:甲公司按乙公司要求,从国外购进一套玻璃生产线设备租赁给乙公司使用;租赁期限10年,从设备交付时起算;年租金400万元(每季支付100万元),从设备交付时起算;租期届满后
1904年的癸卯学制最早把小学教育纳入义务教育的范围。()
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
普罗米修斯
Babiescanlearnevenintheirsleep.Aninfantcanrecognizealotofsoundsbythetimeheorsheisayearold.
A、Helikeslivingalone.B、Hishouseisfarfromhisparents’house.C、Heisbusywithhisbusiness.D、Healwaysquarrelswithh
最新回复
(
0
)