首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: (1)AB=BA; (2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: (1)AB=BA; (2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
admin
2019-05-11
64
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
(1)AB=BA;
(2)存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵.
选项
答案
(1)由AB=A-B得A-B-AB+E=E,(E+A)(E-B)=E, 即E-B与E+A互为逆矩阵,于是(E-B)(E+A)=E=(E+A)(E-B), 故AB=BA. (2)因为A有三个不同的特征值λ
1
,λ
2
,λ
3
,所以A可以对角化,设A的三个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
,则有A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),于是有ABξ
i
=λ
i
βξ
i
=1,2,3. 若Bξ
i
≠0,则Bξ
i
是A的属于特征值λ
i
的特征向量,又λ
i
为单根,所以有Bξ
i
=μ
i
ξ
i
; 若Bξ
i
=0,则ξ
i
是B的属于特征值。的特征向量.无论哪种情况,B都可以对角化,而且ξ
i
是B的特征向量,因此,令P=(ξ
1
,ξ
2
,ξ
3
),则P
-1
AP,P
-1
BP同为对角阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/YfV4777K
0
考研数学二
相关试题推荐
设f(χ,y)=讨论f(χ,y)在(0,0)处的连续性、可偏导性与可微性.
设f(χ)在区间[0,1]上可导,f(1)=2χ2f(χ)dχ.证明:存在ξ∈(0,1),使得2f(ξ)+ξf′(ξ)=0.
设f(χ)连续且关于χ=T对称,a<T<b.证明:∫abf(χ)dχ=2∫Tbf(χ)dχ+∫a2T-bf(χ)dχ.
设f(χ)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f〞(ξ)=
曲线y=x2+x(x<0)上曲率为的点的坐标是_________.
求f(x)=的连续区间、间断点并判别其类型.
设f’(x)=arcsin(x一1)2且f(0)=0,求I=∫01f(x)dx.
设一锥形贮水池,深15m,口径20m,盛满水,今以吸筒将水吸尽,问做多少功?
细菌的增长率与总数成正比.如果培养的细菌总数在24h内由100增长到400,求前12h后的细菌总数.
随机试题
解释下列句子中划线的词语诸侯危社稷,则变置。
有关卡氏肺孢菌感染特征的叙述错误的是
腹部摄影标准片诊断要求,错误的是
A.CYP3A4抑制剂B.CYP3A4诱导剂C.CYP2C19底物药物D.CYP1A2底物药物E.CYP2D6抑制剂红霉素属于()。
组建项目监理组织时,应当注意到( )。
宏远公司在承办市科技博览会后,准备招开记者招待会。秘书为总经理答记者问准备的资料应包括()。
下面的句子与例句使用的修辞方法相同而且运用恰当的一句是:例句:满堂灌要不得,它把学生当成鸭子填,不管学生听不听,强迫学生接受。
Olderpeoplemustbegivenmorechancestolearniftheyaretocontributetosocietyratherthanbeafinancialburden,accordi
下列字符中,其ASCII码值最大的是________。
(1)"Masterpiecesaredumb."wroteFlaubert."Theyhaveatranquilaspectliketheveryproductsofnature,likelargeanimalsan
最新回复
(
0
)