首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: (1)AB=BA; (2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: (1)AB=BA; (2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
admin
2019-05-11
88
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
(1)AB=BA;
(2)存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵.
选项
答案
(1)由AB=A-B得A-B-AB+E=E,(E+A)(E-B)=E, 即E-B与E+A互为逆矩阵,于是(E-B)(E+A)=E=(E+A)(E-B), 故AB=BA. (2)因为A有三个不同的特征值λ
1
,λ
2
,λ
3
,所以A可以对角化,设A的三个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
,则有A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
), AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),于是有ABξ
i
=λ
i
βξ
i
=1,2,3. 若Bξ
i
≠0,则Bξ
i
是A的属于特征值λ
i
的特征向量,又λ
i
为单根,所以有Bξ
i
=μ
i
ξ
i
; 若Bξ
i
=0,则ξ
i
是B的属于特征值。的特征向量.无论哪种情况,B都可以对角化,而且ξ
i
是B的特征向量,因此,令P=(ξ
1
,ξ
2
,ξ
3
),则P
-1
AP,P
-1
BP同为对角阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/YfV4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f〞(ξ)=
设二阶常系数齐次线性微分方程以y1=e2χ,y2=2e-χ-3e2χ为特解,求该微分方程.
设A为四阶矩阵,|A*|=8,则|-3A*|=_______.
改变积分次序并计算
极坐标下的累次积分f(rcosθ,rsinθ)rdr等于().
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2-4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
曲线y=x2+x(x<0)上曲率为的点的坐标是_________.
两曲线y=处相切,则()
求函数f(x)=的间断点并指出其类型.
随机试题
无限长直螺线管单位长度的匝数为n,通过螺线管的电流强度随时间的变化关系为I=I0eαt(SI),式中I0、α为常量,且α>0。一个由弹性导线制作的单匝圆形线圈置于螺线管内(如图所示),线圈平面始终保持与磁场垂直且圆心一直位于螺线管轴线上。设圆形线圈面
病毒灭活后的血浆含有稳定和不稳定的凝血因子,但缺乏大量的何种因子
不需作TDM的是
甘草反
地高辛用于心力衰竭患者的原因
纳税人停业期限不得超过()年。
下列关于契税的表述,正确的是()。
工笔淡彩
Bigcrimesdeservetoughresponses.Inanycountrythetheftandpublicationof250,000secretgovernmentdocumentswoulddeserv
TheEndofAIDS?[A]OnJune5th1981America’sCentresforDiseaseControlandPreventionreportedtheoutbreakofanunusualf
最新回复
(
0
)