首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列幂级数的和函数:
求下列幂级数的和函数:
admin
2016-10-20
34
问题
求下列幂级数的和函数:
选项
答案
(Ⅰ)易知幂级数收敛域为(-1,1).记S(x)=[*].则 [*] 对上式两边求导,得和函数 [*] 故只要消去系数中的因子n便可以使用e
x
的展开式求和. 幂级数的收敛域为(-∞,+∞).和函数 [*] 把g(x)的幂级数表达式作逐项积分,可得 [*] 所以 g(x)=(xe
x
)’=(1+x)e
x
, S(x)=xg(x)=(x+x
2
)e
x
(-∞<x<+∞). (Ⅲ)利用逐项求导两次去掉幂级数的通项[*]的分母n(2n+1),化为几何级数求和函数. 计算可得幂级数[*]的收敛半径R=1,收敛域是[-1,1],设其和函数为S(x),则 [*] 为便于利用逐项求导去掉幂级数通项的分母n(2n+1)化为几何级数求和,可引入幂级数[*],这个幂级数的收敛半径也是R=1,收敛域也是[-1,1],设其和函数为S
1
(x),则 [*] 且S
1
(0)=S’
1
(0)=0.在开区间(-1,1)内逐项求导两次可得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/YgT4777K
0
考研数学三
相关试题推荐
某数学家有两盒火柴,每一盒装有N根.每次使用时,他在任一盒中取一根,问他发现一盒空,而另一盒还有k根火柴的概率是多少?
设α1=(2,-1,3,0),α2=(1,2,0,-2),α3=(0,-5,3,4),α4=(-1,3,t,0),则________时,α1,α2,α3,α4线性相关.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
图2.14中有三条曲线a,b,c,其中一条是汽车的位置函数的曲线,另一条是汽车的速度函数的曲线,还有一条是汽车的加速度函数的曲线,试确定哪条曲线是哪个函数的图形,并说明理由.
设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_____________.
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值A的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
设四元线性齐次方程组(1)为x1+x2=0x2-x4=0又已知某线性齐次方程组(Ⅱ)的通解为:k1(0,1,1,0)+k2(-1,2,2,1).问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
随机试题
用户使用浏览器访问万维网网站时,网站服务器把用户的信息记录在服务器上,称为______。
设则=()
支配前锯肌的神经为()
流行病学特征是指
甲,某市经营农副产品的个体户:乙,某县物资储运站。甲在某县准备收购蒜头五千公斤,打算搭过往车一次运回,故将大蒜按收购情况分三次存放在乙处。双方的仓储保管合同议定:最后一批货入库后第三天,货物全部出库。对大蒜按比例抽验。其他条款齐全,事后,双方抽验发现有20
建设项目法人可以是()。
公司债券上市交易后,下列情形中,由证券交易所决定暂停其公司债券上市交易的有()。
相对于权益融资方式,企业发行债券融资的缺点是()。[2006年真题]
按照经济理性决策模型,决策者的特征包括()。
拦网是最积极的防守技术,又能起到直接进攻作用。拦网技术由准备姿势和()组成。
最新回复
(
0
)