首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量.向量a 3满足Aα3=α2+α3.(1)证明α1,α2,α3线性无关;(2)令P=[α1,α2,α3],求P-1AP.
[2008年] 设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量.向量a 3满足Aα3=α2+α3.(1)证明α1,α2,α3线性无关;(2)令P=[α1,α2,α3],求P-1AP.
admin
2019-05-10
653
问题
[2008年] 设A为三阶矩阵,α
1
,α
2
为A的分别属于特征值一1,1的特征向量.向量a 3满足Aα
3
=α
2
+α
3
.(1)证明α
1
,α
2
,α
3
线性无关;(2)令P=[α
1
,α
2
,α
3
],求P
-1
AP.
选项
答案
(1)用反证法产生与α
1
,α
2
线性无关的矛盾证之.(2)注意到Aα
1
,Aα
2
,Aα
3
可写成α
1
,α
2
,α
3
的线性组合.由命题2.1.2.3知,可将矩阵[Aα
1
,Aα
2
,Aα
3
]改写成矩阵[α
1
,α
2
,α
3
]与另一数字矩阵的乘积,利用前者的可逆性即可求得P
-1
AP. (1)用反证法证明.如果α
1
,α
2
,α
3
线性相关,因α
1
,α
2
属于A的不同特征值的特征向量,故线性无关.于是α
3
可由α
1
,α
2
线性表出.设α
3
=l
1
α
1
+l
2
α
2
,则 Aα
3
=α
2
+α
3
=α
2
+l
1
α
1
+l
2
α
2
=(1+l
2
)α
2
+l
1
α
1
. 又 Aα
3
=A(l
1
α
1
+l
2
α
2
)=l
1
Aα
1
+l
2
Aα
2
=一l
1
α
1
+l
2
α
2
, 故 l
1
α
1
+(1+l
2
)α
2
=一l
1
α
1
+l
2
α
2
, 即 2l
1
α
1
+α
2
=0, 所以α
1
,α
2
线性相关,与题设α
1
,α
2
线性无关,矛盾.于是α
1
,α
2
,α
3
线性无关. (2)因Aα
1
=一α
1
,Aα
2
=α
2
,Aα
3
=α
2
+α
3
,故Aα
1
,Aα
2
,Aα
3
为α
1
,α
2
,α
3
的线性组合, 由命题2.1.2.3得到 A=[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
]=[一α
1
,α
2
,α
3
+α
3
]=[α
1
,α
2
,α
3
][*] 即AP=P[*],又由(1)知,P可逆,故P
-1
AP=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/YjV4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有|f(χ)-f(y)|≤M|χ-y|k.(1)证明:当k>0时,f(χ)在[a,b]上连续;(2)证明:当k>1时,f(χ)≡常数.
设f(χ)在χ=a处二阶可导,证明=f〞(a).
证明:用二重积分证明
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=,Q=.(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
证明:若矩阵A可逆,则其逆矩阵必然唯一.
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
设A为,n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E证明:B的列向量组线性无关.
随机试题
调查人员培训的内容一般包括()
肝细胞气球样变是
属于腹膜间位器官的是
独立基础指呈独立柱墩形式的基础,是钢筋混凝土排架结构柱下基础的主要形式之一。()
下列施工归档文件的质量要求中,正确的有()。
在碾压水泥稳定土时,头两遍压路机的碾压速度以()为宜。
关于商业银行发行公募理财产品相关披露信息的期限要求的表述,错误的是()。
下列关于社会主义初级阶段的表述正确的是()。
3,6,10,19,37,( )
在19世纪“实业救国”运动中,中国并没有因此变得富强,根本原因是()。
最新回复
(
0
)