首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n×m矩阵,B是m×n矩阵,E是n阶单位矩阵,若AB=E,则( ).
设A是n×m矩阵,B是m×n矩阵,E是n阶单位矩阵,若AB=E,则( ).
admin
2019-08-12
42
问题
设A是n×m矩阵,B是m×n矩阵,E是n阶单位矩阵,若AB=E,则( ).
选项
A、B的行向量组线性无关
B、B的列向量组线性无关
C、A
-1
=B
D、|AB|=|A||B|
答案
B
解析
由AB=E得r(AB)=n,从而r(A)≥n,r(B)≥n,
又r(A)≤n,r(B)≤n,所以r(A)=n,r(B)=n,
故B的列向量组线性无关,应选B.
转载请注明原文地址:https://kaotiyun.com/show/YqN4777K
0
考研数学二
相关试题推荐
证明可微的必要条件:设z=f(x,y)在点(x0,y0)处可微,则fx’(x0,y0)与fy’(x0,y0)都存在,且=fx’(x0,y0)△x+fy’(x0,y0)△y。
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
求
设3阶矩阵A的各行元素之和都为2,向量α1=(-1,1,1)T,α2==(2,-1,1)T都是齐次线性方程组AX=0的解.求A.
已知n(n≥3)阶实矩阵A=(aij)n×n满足条件:(1)aij=Aij(i,j=1,2,…,n),其中Aij是aij的代数余子式;(2)a11≠0.求|A|.
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记un=f(n),n=1,2,…,又u1<u2证明
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn).
设f(x)二阶可导,=1且f’’(x)>0.证明:当x≠0时,f(x)>x.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:(1)在开区间(a,b)内g(x)≠0;(2)在开区间(a,b)内至少存在一点ξ,使.
设则(A*)-1=_____________.
随机试题
治湿痰,宜选用
简述培训的作用。
脾虚湿滞所致的阴黄,宜选用
胃癌最常见的转移途径是
对实施暴力行为的精神病人的强制医疗程序,下列选项说法正确的是:()
某项目当利率为14%时,净现值为49.78万元;当利率为16%时,净现值为-70.05万元,则项目的财务内部收益率IRR应为( )。
污水处理厂的选址应该注意的原则包括下列()。
《义务教育数学课程标准(2011年版)》的课程性质有哪些?
《行政法规制定程序条例》第8条第2款规定:列入国务院年度立法工作计划的行政法规项目应当符合以下哪几项要求()
A、Largeamountsofnewspaperandcoloredpaper.B、Smallpiecesofragsorcloth.C、Oldenvelopswithlittleprinting.D、Softwoo
最新回复
(
0
)