首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实矩阵,则对线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0,必有 ( )
设A为n阶实矩阵,则对线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0,必有 ( )
admin
2016-09-19
52
问题
设A为n阶实矩阵,则对线性方程组(Ⅰ)AX=0和(Ⅱ)A
T
AX=0,必有 ( )
选项
A、(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解
B、(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解
C、(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解
D、(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解
答案
A
解析
方程AX=0和A
T
AX=0是同解方程组.
转载请注明原文地址:https://kaotiyun.com/show/YtT4777K
0
考研数学三
相关试题推荐
[*]
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件().
假设E,F是两个事件,(1)已知P(E)=0.4,P(F)=0.6,P(E∪F)=0.8,计算P(E|F)和P(F|E);(2)已知P(E)=0.3,P(F)=0.5,P(E|F)=0.4,计算P(E∩F),P(E∪F),P(F|E).
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
证明:在自变量的同一变化过程中,(1)若f(x)是无穷大,则1/f(x)是无穷小;(2)若f(x)是无穷小且f(x)≠0,则1/f(x)是无穷大。
设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y与V=X-Y不相关的充分必要条件为().
设F1(x)与F2(x)分别为随机变量,X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取().
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向节,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.β不能由α1,α2,α3线性表示;
随机试题
植物进行光合作用和蒸腾作用的主要场所是()。
关于套细胞淋巴瘤的叙述,错误的是
外用杀虫主治疥疮,内服可助阳通便的药物是
甲于1972年将房屋出典给乙,典价5000元,典期20年。1992年典期届满,甲以5000元向乙回赎,乙主张甲必须以该房现价3万元回赎。依照有关法律规定,甲应按照哪一价款回赎典物?
根据增值税规定,下列进项税额不得从销项税额中抵扣的是()。(2012年真题)
C公司向D公司进口定做木质宾馆家具700套,合同规定买方发现单货不符时索赔期限为货到目的港的30天内,付款期为90天内。由于C公司的客户E宾馆尚未建好,家具无法安装。两个月后,待宾馆完工,家具就位,发现某些家具发生起壳,就向D公司提出拒付,但D公司依据合
自主学习是指教学条件下的学生高品质的学习,它是相对于“被动学习”而言的。()
下列情形中,人民法院可以为被告人指定辩护人的是()。
卫生部和国家工商行政管理总局对某国有企业共同作出一项行政处罚,该企业不服欲申请行政复议,应当如何处理?( )
某篮球队12个人的球衣号码是从4到15的自然数,如从中选出3个人参加三对三篮球比赛。则选出的人中至少有两人的球衣号码是相邻自然数的概率为多少?()
最新回复
(
0
)