首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设n阶矩阵A的伴随矩阵A*≠O.若考ξ1,ξ2,ξ3,ξ4是非齐次线性方程组AX=b的互不相等的解,则对应的齐次线性方程组AX=0的基础解系( ).
[2004年] 设n阶矩阵A的伴随矩阵A*≠O.若考ξ1,ξ2,ξ3,ξ4是非齐次线性方程组AX=b的互不相等的解,则对应的齐次线性方程组AX=0的基础解系( ).
admin
2021-01-25
40
问题
[2004年] 设n阶矩阵A的伴随矩阵A
*
≠O.若考ξ
1
,ξ
2
,ξ
3
,ξ
4
是非齐次线性方程组AX=b的互不相等的解,则对应的齐次线性方程组AX=0的基础解系( ).
选项
A、不存在
B、仅含一个非零解向量
C、含有两个线性无关的解向量
D、含有三个线性无关的解向量
答案
B
解析
解一 当A
*
≠O时,秩(A
*
)≠0.因而秩(A
*
)=n或秩(A
*
)=1.于是秩(A)=n或秩(A)=n-1.由题设知AX=b有四个互不相等的解,因而解不唯一,于是秩(A)=n-1.因而其基础解系仅含一个解向量.仅(B)入选.
解二 因A
*
≠O,故秩(A
*
)≥1,则秩(A)≥n-1.又因AX=0有解且不唯一,故秩(A)≤n-1.因而秩(A)=n-1.其基础解系仅含一个解向量.仅(B)入选.
解三 因A
*
≠o,故A
*
中至少有一个元素A
ij
=(-1)
i+j
M
ij
≠0,即A的元素a
ij
的余子式M
ij
≠0,而M
ij
为A的n一1阶子行列式,故秩(A)≥n一1.
又由AX=b有解且不唯一,有秩(A)≤n-1<n,故秩(A)=n-1,于是AX=0的一个基础解系所含解向量的个数为n-秩(A)=n-(n-1)=1.仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/Yux4777K
0
考研数学三
相关试题推荐
(99年)设矩阵A=且|A|=-1,又设A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=(-1,-1,1)T.求a,b,c及λ0的值.
(2018年)将长为2m的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小值?若存在,求出最小值.
设λ1,λ2是n阶方阵A的两个不同特征值,x1,x2分别是属于λ1,λ2的特征向量.证明:x1+x2不是A的特征向量.
[2003年]已知齐次线性方程组其中试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
设X的分布函数为F(x)=且Y=X2-1,则E(XY)=______.
f(x1,x2,x3,x4)=XTAX的正惯性指数是2,且A2-2A=0,该二次型的规范形为______.
广义积分
设f(x)二阶可导,且f(0)=0,令g(x)=(Ⅰ)确定a的取值,使得g(x)为连续函数;(Ⅱ)求g’(x)并讨论函数g’(x)的连续性.
设则有
设D:x2+y2≤1;D1:x2+y2≤1,x≥0,y≥0.则下列选项中不成立的是()
随机试题
国家赔偿法规定,行政机关及其工作人员在行使行政职权时侵犯财产权情形包括()
患者,女,27岁。右手被蒸汽Ⅰ度烫伤。其创面特点是
患者,女,42岁。行经时小腹绵绵作痛,经血色暗量少,伴腰骶酸痛,头晕耳鸣,舌淡红苔薄,脉沉细。该病的针灸治疗主穴为
药物不良反应的报告范围分为报告药品引起的所有可疑不良反应和药品引起的严重罕见或新的不良反应,其分界年限为
下列不属于短期偿债能力分析指标的是:()。
外墙外保温工程的材料进场前,监理、施工总包单位应严格核查()。
按规定,项目必须满足一定条件方可进行施工准备,这些条件中不包括()。
根据民法通则及相关规定,民事法律行为应当具备下列哪些条件?
斯腾伯格认为在认知性智力活动中起着最重要的核心作用,它解决问题时使用的策略的智力内部构成成分是()。
Whatdobothofthespeakersagreeon?
最新回复
(
0
)