首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是( )
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是( )
admin
2019-12-26
62
问题
设α
1
,α
2
,…,α
s
均为n维列向量,A是m×n矩阵,下列选项正确的是( )
选项
A、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
B、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
C、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
D、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
1
,…,Aα
s
线性无关.
答案
A
解析
若α
1
,α
2
,…,α
s
线性相关,则存在不全为零的数kα
1
,kα
2
,…,kα
s
,使
k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0,
在等式的两端左乘矩阵A得
k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
=A(k
1
α
1
+k
2
α
2
+…+k
s
α
s
)
=A0=0.
由于k
1
,k
2
,…,k
s
不全为零,故.Aα
1
,Aα
2
,…,Aα
s
线性相关.所以(A)选项正确,(B)不正确.
设α
1
,α
2
,…,α
s
线性无关,若m=n,且A=E,则Aα
1
,Aα
2
,…,Aα
s
线性无关.所以(C)不正确.若A=O,则Aα
1
,Aα
2
,…,Aα
s
线性相关.所以(D)不正确.故选(A).
本题也可以用秩分析.由于(Aα
1
,Aα
2
,…,Aα
s
)=Aα
1
,α
2
,…,α
s
),所以
r(Aα
1
,Aα
2
,…,Aα
s
)=r[A(α
1
,α
2
,…,α
s
)]≤r(α
1
,α
2
,…,α
3
).
若α
1
,α
2
,…,α
s
线性相关,则r(α
1
,α
2
,…,α
s
)
1,Aα
2
,…,Aα
s
)
1,Aα
2
,…,Aα
s
线性相关.
故选项(A)正确.
注:要确定结论正确,则要求在任意情况下结论都王确,取特殊的正确,则不能确定结论正确.要确定结论不正确,只需取一种特殊情况,结论不正确,即可否定.
转载请注明原文地址:https://kaotiyun.com/show/WGD4777K
0
考研数学三
相关试题推荐
设A是n阶矩阵,k为正整数,α是齐次方程组AkX=0的一个解,但是Ak-1α≠0.证明α,Aα,…,Ak-1α线性无关.
A=证明|xE—A|的4个根之和等于a11+a22+a33+a44.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
求微分方程y"+2y’一3y=(2x+1)ex的通解.
设y(x)是方程y(4)一y"=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
求下列幂级数的收敛域及其和函数:
已知线性方程组有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
无穷级数的收敛区间为________。
设三阶方阵A,B满足关系式A—1BA=6A+BA,且A=则B=________。
随机试题
2011年韩玉笙因盖房挖地基,发现一个瓦罐,内有500块银元及一块棉布,上面写着“为防日寇,特埋此。王天民,1938年7月5日”。王天民为王大水的爷爷,1938年7月8日被日寇杀害。该500块银元()
A.恶心、腹痛、腹泻和血小板减少B.心动过缓,低血压和角膜微沉积C.感觉异常、精神错乱和惊厥D.心动过缓和支气管痉挛奎尼丁的副作用
临终患者最后消失的为()。
王某,女,39岁,心下痞,满而不痛,干呕,腹胀,下利,舌苔薄白而腻,脉弦滑。治宜选用
A、利福平B、乙胺丁醇C、异烟肼D、链霉素E、吡嗪酰胺有肝病或与异烟肼合用引起肝损害()
成功的市场营销实施取决于()等要素的紧密结合。
根据各主体之间的法律地位的不同,教育法律关系可分为()。
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
因特网是一个非常重要的网络,以下_______是因特网所使用的最基本、最重要的协议。
窗体上有一个名称为Combo1的组合框,为了引用Combo1中最后一个列表项,应使用的表达式是
最新回复
(
0
)