首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξf(t)dt+(ξ-1)f(ξ)=0.
设f(χ)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξf(t)dt+(ξ-1)f(ξ)=0.
admin
2019-08-23
49
问题
设f(χ)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫
0
ξ
f(t)dt+(ξ-1)f(ξ)=0.
选项
答案
令φ(χ)=χ∫
0
χ
f(t)dt-∫
0
χ
f(t)dt. 因为φ(0)=φ(1)=0,所以由罗尔定理,存在ξ∈(0,1),使得φ′(ξ)=0. 而φ′(χ)=∫
0
χ
f(t)dt+(χ-1)f(χ),故∫
0
ξ
f(t)dt+(ξ+1)f(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/YzA4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上满足|f〞(χ)|≤2,且f(χ)在(a,b)内取到最小值.证明:|f′(a)|+|f′(b)|≤2(b-a).
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:方程组Ax=b的任一解均可由η,η+ξ1,…,η+ξn-r线性表出.
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:η,η+ξ1,η+ξ2,…,η+ξn-r,是Ax=b的n-r+1个线性无关解向量;
设f(χ)在(0,1)内有定义,且eχf(χ)与e-f(χ)在(0,1)内都是单调增函数,证明:f(χ)在(0,1)内连续.
设函数f(x)在[0,+∞)上可导,f(0)=0,且其反函数为g(x).若g(t)dt=x2ex,求f(x).
设函数z=z(χ,y)由方程χ=f(y+z,y+χ)所确定,其中f(χ,y)具有二阶连续偏导数,求dz.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,,f(1)=0.证明:对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
设f(x)在[a,b]上连续,在(a,b)上可导,且f(A)=f(B)=1,证明:必存在ξ,η∈(a,b),使得eη-ξ[f(η)+f’(η)]=1。
如果秩r(α1,α2,…,αs)=r(α1,α2,…,αs,αs+1),证明αs+1可由α1,α2,…,αs线性表出.
设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明:在[一a,a]上存在η,使a3f"(η)=3∫一aaf(x)dx.
随机试题
在外周组织能抑制T4转换为T3的药物是
患者女,27岁,会计。因“不断思考问题,重复无意义动作并引起痛苦2年,自伤1天”主动请朋友陪诊来精神科急诊。患者坐立不安,情绪激越。双手手背可见新鲜烟烫痕迹。你认为目前适宜的治疗措施是
急性胰腺炎治疗的关键是
下列关于钢材的叙述,不正确的是()。
高压同步电动机供电电缆的接线端应有与相序A、B、C对应的( )色标。将所安装的电气设备金属外壳与变压器中性线相连接,这种连接被称为( )。
武汉某中外合资企业专营玻璃加工生产,该公司于2000年6月与香港某公司签约购买平板玻璃深加工设备一套,该设备属于《外商投资产业指导目录》中的鼓励类进口项目。设备于2001年2月1日(星期四)由华阳运输公司的“HUADONGVOY.302”轮载运进口,该合资
用于衡量目标区域流动性状况的主要指标是流动比率、存量存贷比率以及()
ThetermpaperwasduelastFriday.You__________totheprofessorbythen.
党政机关公文是党政机关实施领导、履行职能、处理公务的具有特定效力和规范体式的文书。其中命令(令)适用于公布行政法规和规章、宣布施行重大强制性措施、批准授予和晋升衔级、嘉奖有关单位和人员。意见适用于对重要问题提出见解和处理办法。批复适用于答复下级机关请示事项
徐先生认识赵、钱、孙、李、周五位女士,已知下列条件:①五位女士分别属于两个年龄档,有三位小于30岁,有两位大于30岁。②五位女士的职业有两位是教师,其他三位是秘书。③赵和孙属于相同年龄档。④李和周不属于相同年龄档。⑤钱和周的职业相同。⑥孙和李的
最新回复
(
0
)