首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξf(t)dt+(ξ-1)f(ξ)=0.
设f(χ)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξf(t)dt+(ξ-1)f(ξ)=0.
admin
2019-08-23
38
问题
设f(χ)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫
0
ξ
f(t)dt+(ξ-1)f(ξ)=0.
选项
答案
令φ(χ)=χ∫
0
χ
f(t)dt-∫
0
χ
f(t)dt. 因为φ(0)=φ(1)=0,所以由罗尔定理,存在ξ∈(0,1),使得φ′(ξ)=0. 而φ′(χ)=∫
0
χ
f(t)dt+(χ-1)f(χ),故∫
0
ξ
f(t)dt+(ξ+1)f(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/YzA4777K
0
考研数学二
相关试题推荐
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系.证明:η,η+ξ1,η+ξ2,…,η+ξn-r,是Ax=b的n-r+1个线性无关解向量;
设函数f(x)在[0,+∞)上可导,f(0)=0,且其反函数为g(x).若g(t)dt=x2ex,求f(x).
设函数z=z(χ,y)由方程χ=f(y+z,y+χ)所确定,其中f(χ,y)具有二阶连续偏导数,求dz.
证明:当χ>0时,arctanχ+.
设一质点在单位时间内由点A从静止开始做直线运动至点B停止,A,B两点间距离为1,证明:该质点在(0,1)内总有某一时刻的加速度的绝对值不小于4.
证明线性方程组(Ⅰ)有解的充分必要条件是方程组(Ⅲ)是同解方程组.
设f(χ)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f′(ξ)+f′(η)=0.
设f(x)在[a,b]上连续,在(a,b)上可导,且f(A)=f(B)=1,证明:必存在ξ,η∈(a,b),使得eη-ξ[f(η)+f’(η)]=1。
设f(x)在[-a,a](a>0)上有四阶连续的导数,存在.证明:存在ξ1,ξ2∈[-a,a],使得
随机试题
行政机关应当根据听证笔录,作出行政许可决定()
下列属于AFB隔离的是
BLS的含义是
下列关于水溶性颗粒剂干燥的叙述,错误的是
盐酸吗啡在
痰湿内阻所致头晕表现的特征是()
(2006年)如图3.4—2所示直径为250mm、长为350m的管道自水库取水排入大气中,管道入口和出口分别比水库液面低8m和14m,沿程阻力系数为0.04,不计局部阻力损失。排水量为()m3/s。
将土体视为弹性介质,采用m法计算桩的水平承载力和位移时,其水平抗力系数随深度变化图式为下列()种情况。
现金预算是以日常业务预算和财务预算为基础所编制的反映现金收支情况的预算。()
与Microsoft网络用户一样,NetWare网络用户也是按______位虚拟驱动程序组件实现的。
最新回复
(
0
)