首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如果秩r(α1,α2,…,αs)=r(α1,α2,…,αs,αs+1),证明αs+1可由α1,α2,…,αs线性表出.
如果秩r(α1,α2,…,αs)=r(α1,α2,…,αs,αs+1),证明αs+1可由α1,α2,…,αs线性表出.
admin
2018-11-11
98
问题
如果秩r(α
1
,α
2
,…,α
s
)=r(α
1
,α
2
,…,α
s
,α
s+1
),证明α
s+1
可由α
1
,α
2
,…,α
s
线性表出.
选项
答案
设r(α
1
,α
2
,…,α
s
)=r(α
1
,α
2
,…,α
s
,α
s+1
)=r,且α
i1
,α
i2
,…,α
ir
是向量组α
1
,α
2
,…,α
s
的极大线性无关组,那么α
i1
,α
i2
,…,α
ir
也是α
1
,α
2
,…,α
s
,α
s+1
的极大线性无关组.从而α
s+1
可由α
i1
,α
i2
,…,α
ir
线性表出.那么α
s+1
可由α
1
,α
2
,…,α
s
线性表出. 或者考察方程组χ
1
α
1
+χ
2
α
2
+…+χ
s
α
s
=α
s+1
.因为r(α
1
,α
2
,…,α
s
)=r(α
1
,α
2
,…,α
s
,α
s+1
), 所以方程组χ
1
α
1
+χ
2
α
2
+…+χ
s
α
s
=α
s+1
有解.因此α
s+1
可由α
1
,α
2
,…,α
s
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/Sxj4777K
0
考研数学二
相关试题推荐
设矩阵其行列式|A|=一1,又A的伴随矩阵A*有一个特征值λ0,A*的属于λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c和λ0的值.
设3维列向量α,β满足αTβ=2,则BαT的非零特征值为_______.
求函数z=x4+y4一x2一2xy—y2的极值.
设某地在任何长为t的时间间隔内发生地震的次数X服从参数为λt的泊松分布,时间以周计,λ>0,(1)设T为两次地震之间的间隔时间,求T的概率分布;(2)求相邻两周内至少发生三次地震的概率;(3)求连续8周无地震的条件下,在未来7周内仍无地震的概率.
确定常数α使向量组α1=(1,1,a)T,α2=(1,n,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
在上半平面求一条向上凹的曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
设函数f(x)满足f(1)=f’(1)=2.求极限.
用拉格朗日乘数法计算下列各题:(1)欲围一个面积为60m2的矩形场地,正面所用材料每米造价10元,其余三面每米造价5元.求场地长、宽各为多少米时,所用材料费最少?(2)用a元购料,建造一个宽与深相同的长方体水池,已知四周的单位面积材料费为底面单位面积材
计算下列各题:(Ⅰ)设(Ⅱ)设(Ⅲ)设y=,其中a>b>0,求y′.
(1)设f(t)=∫1tdχ,求∫01t2f(t)dt(2)设f(χ)=∫0χecostdt,求∫0πf(χ)cosχdχ.
随机试题
在法定准备率为10%的条件下,当中央银行向某商业银行发放100万贷款后,整个商业银行系统最多能向社会公众发放贷款()。
土地一级开发的模式,对房地产投资者获取土地使用权的途径和价格有重大影响。其常用的操作程序不包括()。
根据《商业银行贷款损失准备管理办法》的规定,贷款损失准备是指商业银行在利润中列支的、用于抵御贷款风险的准备金,不包括在利润分配中计提的一般风险准备。()
在OSI参考模型中,邮件收发功能应在()实现。
A、 B、 C、 D、 B主要数“小黑圆点”、“箭头”和“小菱形”的个数即可。
每次给孩子喂奶时都说“宝贝,乖”,以后孩子饿了哭闹时跟他说“宝贝,乖”,他就会安静下来,这是因为孩子
在X.25网络中,______是网络层协议。
Acourt-martialhasbutrecentlydecidedtoacquithim.
SuddenInfantDeathSyndromeUnderstandably,MargoParisiwantedtotakeeverypossiblesteptoreducetheriskthathernew
Parentscaneasilycomedownwithanacutecaseofschizophrenia(精神分裂症)fromreadingthecontradictoryreportsaboutthestateof
最新回复
(
0
)