首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为 ( )
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为 ( )
admin
2019-01-06
47
问题
设n维列向量组α
1
,α
2
,…,α
m
(m<n)线性无关,则n维列向量组β
1
,β
2
,…,β
m
线性无关的充分必要条件为 ( )
选项
A、向量组α
1
,α
2
,…,α
m
可由向量组β
1
,β
2
,…,β
m
线性表出
B、向量组β
1
,β
2
,…,β
m
可由向量组α
1
,α
2
,…,α
m
线性表出
C、向量组α
1
,α
2
,…,α
m
与向量组β
1
,β
2
,…,β
m
等价
D、矩阵A=[α
1
,α
2
,…,α
m
]与矩阵B=[β
1
,β
2
,…,β
m
]等价
答案
D
解析
A=[α
1
,α
2
,…,α
m
],B=[β
1
,β
2
,…,β
m
]等价<=>r(α
1
,…,α
m
)=r(β
1
,…,β
m
)<=>β
1
,β
2
,…,β
m
线性无关(已知α
1
,α
2
,…,α
m
线性无关时).
转载请注明原文地址:https://kaotiyun.com/show/YzP4777K
0
考研数学三
相关试题推荐
设A是n阶实反对称矩阵,证明(E一A)(E+A)-1是正交矩阵.
[*]
设随机变量X与Y相互独立,且都在[0,1]上服从均匀分布,试求:(I)U=XY,的概率密度fU(u);(Ⅱ)V=|X—Y|的概率密度fV(v).
设二维连续型随机变量(X,Y)在区域D上服从均匀分布,其中D={(x,y)||x+y|≤1,|x一y|≤1},求X的边缘密度fX(x)与在X=0条件下,关于Y的条件密度fY1X(y|0).
设二维随机变量(X,Y)的联合分布为其中a,b,c为常数,且记Z=X+Y.求:(I)a,b,c之值;(Ⅱ)Z的概率分布;(Ⅲ)P{Z=X}与P{Z=Y}.
(06年)设非齐次线性微分方程y′+P(χ)y=Q(χ)有两个不同的解y1(χ),y2(χ),C为任意常数,则该方程的通解是【】
(04年)设随机变量X的分布函数为其中参数α>0,β>1,设X1,X2,…,Xn为来自总体X的简单随机样本.(Ⅰ)当α=1时,求未知参数β的矩估计量;(Ⅱ)当α=1时,求未知参数β的最大似然估计量;(Ⅲ)当β=2时
(96年)设函数f(χ)在区间(-δ,δ)内有定义,若当χ∈(-δ,δ)时,恒有|f(χ)|≤χ2,则χ=0必是f(χ)
(15年)设函数f(χ)在(-∞,+∞)内连续,其2阶导函数f〞(χ)的图形如图所示,则曲线y=f(χ)的拐点个数为【】
设矩阵矩阵A满足关系式A(E-C-1B)TCT=E,化简此关系式并求矩阵A.
随机试题
不宜用激素类药物的疾病是
患者,男性,36岁,超声体检发现左肾病变,呈圆形,边界清晰,整齐光滑,直径1.0cm,肿物内为无回声,后方回声明显增强。根据声像图特征,诊断是
重点产业技术发展方向中需要重点发展的右()。
1.背景某项目部负责施工的某市移动通信基站安装工程,包括39个基站的安装及调测工作,工程工期要求60天,保修期1年。项目部在完成了5个基站以后,建设单位提出本工程项目完成一个基站、验收一个基站、投产一个基站。本工程的设计比较细致,工程中未发生设计变更;项
根据《建设工程消防监督管理规定》,建设单位申请消防验收应当提供的材料有()。
界定从事会计工作和提供会计信息的空间范围的会计基本前提是()。
下列心理现象属于认知过程的是()。
若一个圆的直径X服从区间[2,3]上的均匀分布,则该圆面积的数学期望为().
现有一“遗传”关系:设x是y的父亲,则x可以把它的属性遗传给y。表示该遗传关系最适合的数据结构为______
TheproblemofacidrainoriginatedwiththeIndustrialRevolution,andithasbeengrowingeversince.Themoreaccuratescie
最新回复
(
0
)