首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f=x12+x22+x32一4x1x2一4x1x3+2ax2x3经正交变换化为3y12+3y22+by32,求a,b的值及所用正交变换。
设二次型f=x12+x22+x32一4x1x2一4x1x3+2ax2x3经正交变换化为3y12+3y22+by32,求a,b的值及所用正交变换。
admin
2018-02-07
35
问题
设二次型f=x
1
2
+x
2
2
+x
3
2
一4x
1
x
2
一4x
1
x
3
+2ax
2
x
3
经正交变换化为3y
1
2
+3y
2
2
+by
3
2
,求a,b的值及所用正交变换。
选项
答案
二次型及其标准形的矩阵分别是 [*] 由于是用正交变换化为标准形,故A与B不仅合同而且相似。由1+1+l=3+3+b得b=一3。 对λ=3,则有 |3E—A|=[*]=一2(a+2)
2
=0, 因此a=一2(二重根)。 由(3E—A)x=0,得特征向量α
1
=(1,一1,0)
T
,α
2
=(1,0,一1)
T
。 由(一3E—A)x=0,得特征向量α
3
=(1,1,1)
T
。 因为λ=3是二重特征值,对α
1
,α
2
正交化有 β
1
=α
1
=(1,一1,0)
T
, β
2
=α
2
一[*]β
1
=(1,0,一1)
T
一[*](1,一1,0)=[*] (1,1,一2)
T
。 单位化,有 [*] 经正交交换x=Cy,二次型化为3y
1
2
+3y
2
2
一3y
3
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/wTk4777K
0
考研数学二
相关试题推荐
用拉格朗日定理证明:若,且当x>0时,fˊ(x)>0,则当x>0时,f(x)>0.
用集合的描述法表示下列集合:(1)大于5的所有实数集合(2)方程x2-7x+12=0的根的集合(3)圆x2+y2=25内部(不包含圆周)一切点的集合(4)抛物线y=x2与直线x—y=0交点的集合
设,问a,b为何值时,函数F(x)=f(x)+g(x)在﹙﹣∞,﹢∞﹚上连续。
设有函数试分析在点x=0处,k为何值时,f(x)有极限;k为何值时,f(x)连续;k为何值时,f(x)可导.
设函数y(x)由参数方程确定,求曲线y=y(x)向上凸的x取值.
设曲线y=ax2(a>0,x≥0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形.问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.写出二次型f的矩阵表达式;
随机试题
输血可传播以下哪一种疾病
患儿,10岁。发育正常,无明显症状。听诊于胸骨左缘2、3肋间Ⅱ级收缩期杂音,心电图显示右心室肥厚及不完全性右束支传导阻滞。为确诊,选用下列哪项无创性检查最好
主管全国的城市房屋拆迁工作的部门是()。
政府投资必须注重效益,为提高效益,需要在()方面进行规范和采取措施。
在加工贸易保证金台账制度中,对于允许类商品,以下错误的是()。
证券经纪人违反《证券公司监督管理条例》的规定,有下列()情形之一的,责令改正,给予警告,没收违法所得,并处以违法所得等值罚款;没有违法所得或者违法所得不足3万元的,处以3万元以下的罚款;情节严重的,撤销任职资格或者证券从业资格。
根据学习内容的不同,可将学习分为()
假定某厂商需求如下:Q=5000-50P。其中,Q为产量,P为价格。厂商的平均成本函数为:AC=+20。使厂商利润最大化的价格与产量是多少?最大化的利润是多少?
Youaregoingtoreadanewspaperarticleaboutamanwhoisrunningroundtheworld.Eightparagraphshavebeenremovedfromth
Doyouagreewiththeideathatthemoreyousave,thebetterlifewillbe?
最新回复
(
0
)