首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α是n维单位列向量,A=E-ααT,证明:r(A)<n.
设α是n维单位列向量,A=E-ααT,证明:r(A)<n.
admin
2021-11-25
35
问题
设α是n维单位列向量,A=E-αα
T
,证明:r(A)<n.
选项
答案
A
2
=(E-αα
T
)(E-αα
T
)=E-2αα
T
+αα
T
·αα
T
,因为α为单位列向量,所以α
T
α=1,于是A
2
=A,由A(E-A)=O得r(A)+r(E-A)≤n 又由r(A)+r(E-A)≥r[A+(E-A)]=r(E)=n,得r(A)+r(E-A)=n 因为E-A=αα
T
≠O,所以r(E-A)=r(αα
T
)=r(α)=1,故r(A)=n-1<n。
解析
转载请注明原文地址:https://kaotiyun.com/show/Z4y4777K
0
考研数学二
相关试题推荐
设函数f(x)在(0,﹢∞)内可导,f(x)﹥0,f(π/2)=x∈(0,﹢∞)。求:(Ⅰ)f(x);(Ⅱ)定义数列xn=0nπf(t)dt,证明数列{xn}收敛。
设f(x)在[a,b]上具有二阶导数,且f’’(x)﹤0,试证明:
已知向量组α1,α2,α3,α4,和β1,β2,β3,β4都是4维向量,其中r(α1,α2,α3,α4)=2,r(β1,β2,β3,β4)﹥1,并且每个βi(i=1,2,3,4)与α1,α2,α3,α4都正交,则r(β1,β2,β3,β4)=()
设f(x)在(﹣∞,﹢∞)连续,且F(x)=,证明:(Ⅰ)F(x)在(﹣∞,﹢∞)内具有连续的导数;(Ⅱ)若f(x)在(﹣∞,﹢∞)内单调递增,则F(x)在(﹣∞,0]内单调递增,在(0,﹢∞)内单调递减。
已知ζ=(-1,2,-3)T是矩阵A=的一个特征向量。(Ⅰ)试确定参数a,b以及ζ所对应的特征值λ;(Ⅱ)A能否对角化,如果能,试求可逆矩阵P,使得A相似于对角矩阵。
设矩阵B的列向量线性无关,且BA=C,则().
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3α一2A2α.证明:(Ⅰ)矩阵B=(α,Aα,A4α)可逆;(Ⅱ)BTB是正定矩阵.
随机试题
男性,35岁。血压24/13.3kPa(180/100mmHg),经服硝苯吡啶及血管紧张素转换酶抑制剂治疗3周后,血压降至16/10.6kPa(120/80mmHg),关于停药问题应是
高位小肠梗阻除腹痛外最主要的症状是
()是安全生产管理预防为主的根本体现,也是安全生产管理的最高境界。
资料:某公司年末流动资产为250万元(其中,现金50万元,存货75万元,短期证券50万元,应收账款净额25万元,其他50万元),流动负债为200万元。根据资料,回答下列问题:
房地产开发属于资金()经济活动,所以房地产开发公司的资产负债率一般较高。
机体吸收维生素B2需要()。
()不完全属于一般市场经济国家基本的宏观调控目标。
Peoplehavebeenholdingheateddiscussionsrecentlyaboutwomen’sexperienceintheworkplace.LastmonthSherylSandberg,chie
McDonald’s,Greggs,KFCandSubwayaretodaynamedasthemostlitteredbrandsinEnglandasKeepBritainTidy【C1】________fast-f
微机中1KB表示的二进制位数是
最新回复
(
0
)