首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(﹣∞,﹢∞)连续, 且F(x)=, 证明: (Ⅰ)F(x)在(﹣∞,﹢∞)内具有连续的导数; (Ⅱ)若f(x)在(﹣∞,﹢∞)内单调递增,则F(x)在(﹣∞,0]内单调递增,在(0,﹢∞)内单调递减。
设f(x)在(﹣∞,﹢∞)连续, 且F(x)=, 证明: (Ⅰ)F(x)在(﹣∞,﹢∞)内具有连续的导数; (Ⅱ)若f(x)在(﹣∞,﹢∞)内单调递增,则F(x)在(﹣∞,0]内单调递增,在(0,﹢∞)内单调递减。
admin
2019-12-06
95
问题
设f(x)在(﹣∞,﹢∞)连续,
且F(x)=
,
证明:
(Ⅰ)F(x)在(﹣∞,﹢∞)内具有连续的导数;
(Ⅱ)若f(x)在(﹣∞,﹢∞)内单调递增,则F(x)在(﹣∞,0]内单调递增,在(0,﹢∞)内单调递减。
选项
答案
(Ⅰ)当x≠0时,对F(x)求导可得 [*] 当x=0时, [*] 综上可得 [*] 所以F(x)在(﹣∞,﹢∞)内具有连续的导数。 (Ⅱ)[*], 令g(x)=﹣x
2
f(x)+2∫
0
x
tf(t)dt, g
’
(x)=﹣x
2
f
’
(x),已知f(x)在(﹣∞,﹢∞)内单调递增,则f
’
(x)﹥0,g
’
(x)﹤0。当x∈(﹣∞,0],可得g(0)=0﹤g(x),所以F
’
(x)﹥0,即F(x)在(﹣∞,0]内单调递增。当x∈(0,﹢∞),可得g(0)=0﹥g(x),所以F
’
(x)﹤0,则F(x)在(0,﹢∞)内单调递减。
解析
转载请注明原文地址:https://kaotiyun.com/show/yTA4777K
0
考研数学二
相关试题推荐
=__________。
[*]其中C为任意常数
设A为n阶可逆矩阵,若A有特征值λ0,则(A*)2+3A*+2E有特征值________
已知y〞+(χ+e2y)y′3=0,若把χ看成因变量,y看成自变量,则方程化为_______,并求此方程通解为_______.
设f(x,y)在区域D:x2y2≤t2上连续且f(0,0)=4,则=______.
已知向量组(I):α1,α2,α3;(II):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为r(I)=r(Ⅱ)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
设f(x)在上具有连续的二阶导数,且f’(0)=0.证明:存在ξ,η,使得
求极限:.
求极限
随机试题
Forthispart,youareallowed30minutestowriteacompositiononthetopic"WhatWouldHappenIfThereWereNoPower".Youar
下列对细菌耐药性的叙述错误的是
化脓性脑膜炎合并硬膜下积液,常见的病原菌是
混凝土的耐久性主要体现在()。
基金份额持有人享有的权利包括()。
甲公司为境内注册的上市公司,采用人民币为记账本位币,其外币业务采用交易发生日的即期汇率折算。2×17年有关业务如下:(1)甲公司30%的收入来自出口销售,其余收入来自国内销售;生产产品所需原材料有30%需进口,出口产品和进口原材料通常以欧元结算。2×17
根据()的不同,绩效考评方法可以分为品质主导型、行为主导型和效果主导型。
“直线与平面垂直的判定”教学片段:实验:如图5,请同学们拿出准备好的一块(任意)三角形的纸片,我们一起来做一个试验:过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上,(BD、DC与桌面接触).问题6:(1)折痕AD与桌面垂直吗?
数据库系统中实现各种数据管理功能的核心软件称为()。
Peopletakephotographsfora【C1】______ofreasonsbutthemost【C2】______istomakearecordofsomethinginordertoshowot
最新回复
(
0
)