首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(﹣∞,﹢∞)连续, 且F(x)=, 证明: (Ⅰ)F(x)在(﹣∞,﹢∞)内具有连续的导数; (Ⅱ)若f(x)在(﹣∞,﹢∞)内单调递增,则F(x)在(﹣∞,0]内单调递增,在(0,﹢∞)内单调递减。
设f(x)在(﹣∞,﹢∞)连续, 且F(x)=, 证明: (Ⅰ)F(x)在(﹣∞,﹢∞)内具有连续的导数; (Ⅱ)若f(x)在(﹣∞,﹢∞)内单调递增,则F(x)在(﹣∞,0]内单调递增,在(0,﹢∞)内单调递减。
admin
2019-12-06
34
问题
设f(x)在(﹣∞,﹢∞)连续,
且F(x)=
,
证明:
(Ⅰ)F(x)在(﹣∞,﹢∞)内具有连续的导数;
(Ⅱ)若f(x)在(﹣∞,﹢∞)内单调递增,则F(x)在(﹣∞,0]内单调递增,在(0,﹢∞)内单调递减。
选项
答案
(Ⅰ)当x≠0时,对F(x)求导可得 [*] 当x=0时, [*] 综上可得 [*] 所以F(x)在(﹣∞,﹢∞)内具有连续的导数。 (Ⅱ)[*], 令g(x)=﹣x
2
f(x)+2∫
0
x
tf(t)dt, g
’
(x)=﹣x
2
f
’
(x),已知f(x)在(﹣∞,﹢∞)内单调递增,则f
’
(x)﹥0,g
’
(x)﹤0。当x∈(﹣∞,0],可得g(0)=0﹤g(x),所以F
’
(x)﹥0,即F(x)在(﹣∞,0]内单调递增。当x∈(0,﹢∞),可得g(0)=0﹥g(x),所以F
’
(x)﹤0,则F(x)在(0,﹢∞)内单调递减。
解析
转载请注明原文地址:https://kaotiyun.com/show/yTA4777K
0
考研数学二
相关试题推荐
已知A=有三个线性无关的特征向量,则a=_______.
交换积分次序,则=_______.
=_______.
设A=,且存在三阶非零矩阵B,使得AB=O,则a=________,b=_________
设A=的伴随矩阵为A*,且A*BA=2BA一8E,则矩阵B=________.
设n阶矩阵A的元素全是1,则A的n个特征值是____________.
证明:,其中a>0为常数.
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状,若它在进入大气层开始燃烧的前3s内,减少了体积的7/
设f(x)=∫0x2et2dt,g(x)在x=0处连续且满足g(x)=1+2x+o(x)(x→0)。又F(x)=f[g(x)],则F’(0)=()
随机试题
下列不属于资本资产定价模型的局限性的是()。
我国目前居恶性肿瘤死亡前四位的恶性肿瘤是
建设项目负责人的重要职能是()。
吹填工程中,排水口的位置应根据()、排泥管的布置、容泥量等因素确定。
下列行为属于内幕交易的是()。
人出生头2~3年心理发展成就的集中表现是()。
按照《中小学教师职业道德规范》的要求,教师在对待有偿家教的问题上正确的做法是()。
有人说,民主就像一个旋转的陀螺,重要的是旋转的过程,离开了这个过程,民主的陀螺就会倒下。就民主决策而言,正确的决策结果自然会给人们带来希望和信心,而决策的过程,对人们凝聚信心的影响更大。这段文字中的比喻意在强调()。
在边长为8厘米的正方形纸片的四角均剪去一个边长为2厘米的小正方形,折起四边做成一个无盖方形盒子,这个盒子的容积是多少立方厘米?
设A为m×n矩阵,B为k×l矩阵.证明:=R(A)+R(B).
最新回复
(
0
)