首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________。
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________。
admin
2017-12-29
41
问题
设A为二阶矩阵,α
1
,α
2
为线性无关的二维列向量,Aα
1
=0,Aα
2
=2α
1
+α
2
,则A的非零特征值为________。
选项
答案
1
解析
根据题设条件,得
A(α
1
,α
2
)=(Aα
1
,Aα
2
)=(α
1
,α
2
)记P=(α
1
,α
2
),因α
1
,α
2
线性无关,故P=(α
1
,α
2
)是可逆矩阵。由AP=
可得
P
—1
AP=
,则A与B相似,从而有相同的特征值。
因为
所以A的非零特征值为1。
转载请注明原文地址:https://kaotiyun.com/show/ZFX4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上连续,且∫01f(x)dx=0,∫01xf(x)dx=1,证明:存在x2∈[0,1]使得|f(x2)|=4.
设有两个非零矩阵A=[α1,α2,…,αn]T,B=[b1,b2,…,bn]T.计算ABT与ATB;
一商家销售某种商品的价格满足关系p=7—0.2x(万元/单位),x为销售量,成本函数为C=3x+1(万元),其中x服从正态分布N(5p,1),每销售一单位商品,政府要征税t万元,求该商家获得最大期望利润时的销售量.
设n维向量α1,α2,α3满足2α1一α2+3α3=0,对于任意的n维向量β,向量组l1β+α1,l1β+α2,l3β+α3都线性相关,则参数l1,l2,l3应满足关系________.
设有方程y’+P(x)y=x2,其中P(x)=试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
用切比雪夫不等式确定,掷一均质硬币时,需掷多少次,才能保证‘正面’出现的频率在0.4至0.6之间的概率不小于0.9.
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1~S2恒
设a为正常数,则级数的敛散性为________.
已知3维向量组α1,α2,α3线性无关,则向量组α1一α2,α2一kα3,α3一α1也线性无关的充要条件是k________.
设平面区域D由曲线及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为_____.
随机试题
在AgCl水溶液中,其[Ag+]=[Cl-]=1.34×10-5mol/L,Ksp为1.8×10-10,该溶液为()。
A.既能敛肺平喘,又能收涩止带B.既能泻肺平喘,又能利水消肿C.既能止咳平喘,又能止痛镇痉D.既能止咳平喘,又能润肠通便E.既能止咳平喘,又能清肺化痰桑白皮的功效是
被评估企业曾以实物资产(机器设备)与B企业进行联营投资,投资额占B企业资本总额的20%。双方协议联营10年,联营期满,B企业将按机器设备折余价值20万元返还投资方。评估时双方联营已有5年,前5年B企业的税后利润保持在50万元水平,投资企业按其在B企业的投资
电路交换系统可用于()。
人生中难免有与人争辩的时候,你还记得当时与人争辩的情形吗?请描述一下。
依法行政原则,即行政机关必须依法行使行政权,该原则具体又可分为()。
三线建设
G20峰会
Springishere:flowersareinbloom,birdsongfillstheair,andtheinboxesofemployersarefilledwithdesperatepleasfors
Dopeoplegethappierormorefoul-temperedastheyage?Stereotypesofirritableneighbors【C1】______,scientistshavebeentryi
最新回复
(
0
)