首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解. 求A的特征值与特征向量;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解. 求A的特征值与特征向量;
admin
2016-01-11
49
问题
设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解.
求A的特征值与特征向量;
选项
答案
由题设知α
1
,α
2
是Ax=0的两个解,所以有Aα
1
=0,Aα
2
=0.即Aα
1
=0α
1
,Aα
2
=0α
2
. 而α
1
,α
2
线性无关,所以λ
1
=λ
2
=0是A的二重特征值,α
1
,α
2
为A的属于特征值0的两个线性无关的特征向量. 又矩阵A的各行元素之和均为3,即[*]由特征值与特征向量的定义,知λ
3
=3是A的一个特征值,α
3
=(1,1,1)
T
为A的属于特征值3对应的一个特征向量. 于是,A的全部特征值为λ
1
=λ
2
=0,λ
3
=3. 属于特征值0对应的全部特征向量k
1
α
1
+k
2
α
2
(k
1
,k
2
是不全为零的任意常数),属于特征值3对应的全部特征向量k
3
α
3
(k
3
是不为零的任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/7l34777K
0
考研数学二
相关试题推荐
设A,B,C是n阶矩阵,并满足ABAC=E,则下列结论中不正确的是
设随机变量X与Y相互独立,P{Y=-1}=P{Y=1}=,X的概率密度f(x)满足f’(x)+f(x)=0(σ>0),Z=XY.求f(x);
设f(x)在[0,t](t>0)上有n阶导数且非负,已知f(0)=f’+(0)=f”+(0)=…=f+(n-2)(0)=0,f(n)(x)>0.(I)求F(t)=∫0tsf(x)dx-t∫0tf(x)dx(n为大于1的正整数)的n阶导数;(Ⅱ)证明:(
设随机变量X与Y相互独立,P{X=-1}=P{X=1}=,Y~N(0,1),则概率P{XY≤E(XY)}=________.
设随机变量X的概率密度为f(x),EX=μ,DX=σ2,(X1,X2,…,Xn)为总体X的简单随机样本,为样本均值,则正确的是()
设A,B均是n阶方阵,已知A-E可逆,|B|=1,且(A-E)-1=B*-E,其中B*为B的伴随矩阵.则A-1=________.
设x1∈(0,1),且(n=1,2,…).证明:存在,并求其值;
设方程㏑x=kx只有两个正实根,则k的取值范围为()
设向量a=(1,1,-1)T是的一个特征向量.A是否相似于对角矩阵?说明理由.
三次独立试验中A发生的概率不变,若A至少发生一次的概率为19/27,则一次试验中A发生的概率为________.
随机试题
已知最小相位系统的对数幅频特性图如图所示,则系统包含【】个积分环节。
互联网中所有端系统和路由器都必须实现___________协议。
Myparentsalwaysletmehavemyown______ofliving.
一般认为角膜缘的后界止于
某女,证见月经四、五十日一行,量少,色淡,质粘,头晕体胖,心悸气短,脘闷恶心,带下量多,舌淡胖,苔白腻,脉滑。证属( )。
肛裂患者排便后出现第二次持续疼痛的主要原因是
在工程应用中,钢材的塑性指标通常用()表示。
对人力资本的理解正确的是()。
某教师在课外诗歌导读课上准备给学生推荐几首优美的山水诗,帮助学生增加阅读量,陶冶情操,以下诗作不合适的是()。
Ifyouweretobeginanewjobtomorrow,youwouldbringwithyousomebasicstrengthsandweaknesses.Successor【67】inyourwor
最新回复
(
0
)