首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维离散型随机变量(X,Y)的联合概率分布如下表所示 其中a>0,b>0,则一定有
设二维离散型随机变量(X,Y)的联合概率分布如下表所示 其中a>0,b>0,则一定有
admin
2015-05-07
60
问题
设二维离散型随机变量(X,Y)的联合概率分布如下表所示
其中a>0,b>0,则一定有
选项
A、X与Y不相关
B、X
2
与Y
2
不相关
C、X+Y与X-Y不相关
D、X
2
+Y
2
与X
2
-Y
2
不相关
答案
A
解析
从题设条件可得
EX=EY=0, EXY=a-a-a+a=0.
cov(X,Y)=EXY-EXEY=0,ρ=0,
即X与Y不相关,故应选(A).
进一步分析,X
2
与Y
2
的联合概率分布应为
EX
2
=4a+2b, EY
2
=6a, EX
2
Y
2
=4a.
对于选项(B):X
2
与Y
2
不相关
EX
2
Y
2
=EX
2
EY
2
6a(4a+2b)=4a
6a+3b=1.与6a+2b=1且b>0相矛盾,故选项(B)不成立.
对于选项(C)和(D):X+Y与X-Y不相关
cov(X+Y,X-Y)=0
DX=DY
EX
2
=EY
2
4a+2b=6a
a=b.
X
2
+Y
2
与X
2
-Y
2
不相关
cov(X
2
+Y
2
,X
2
-Y
2
)=0
DX
2
=DY
2
2a(4a+2b)=6a.2b
a=b.
若令a=0.15,b=0.05,a≠b,则X+Y与X-Y相关且X
2
+Y
2
与X
2
-Y
2
也相关,故选项(C)与(D)均不成立.
转载请注明原文地址:https://kaotiyun.com/show/ZY54777K
0
考研数学一
相关试题推荐
设A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设A为n阶矩阵,下列结论正确的是().
设λ1,λ2,…,λn是n阶方阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关;
设A是n阶方阵,2,4,…,2n是A的n个特征值,E是n阶单位矩阵.计算行列式|A-3E|的值.
已知n阶方阵A满足矩阵方程A2-3A-2E=0.证明A可逆,并求出其逆矩阵A-1.
设A是m×n矩阵,则方程组Ax=b有唯一解的充要条件是().
设对任意x>0,曲线y=f(x)上点(x,f(x))处的切线在y轴上的截距等于,求f(x)的一般表达式.
如图1-14-2所示,区域D是由曲线y=x3,y=一1,y=1及y轴围成的封闭图形,D1为D位于第一象限的图形,D2为D位于第三象限的图形,则以D为底,以z=x3+y为顶的曲顶柱体体积为().
曲线y=(x2+1)/(2x2-x+3)arctanx的水平渐近线为________.
离散型随机变量X的概率分布为(1)P{X=i}=a2i,i=1,2,…,100;(2)P{X=i}=2ai,i=1,2,…,分别求(1)、(2)中a的值.
随机试题
青年柳某,准备年底结婚,在婚前医学检查时,发现患有淋病,柳某对这一检查结果感到怀疑,可以
我国古代医籍中首载240余种中药的书籍是
合伙人的哪一种形式的出资须经全体合伙人协商一致?()。
出现下列哪些情形,人民法院应当判决驳回原告的诉讼请求?( )
建设工程合同中的法律责任属于()。
关于保兑信用证的保兑行,下列属于其付款责任的是()。
【2017上】周老师总是认真给学生写评语,把它作为教育学生的途径。他给班上一名淘气的学生写了一首打油诗:“小赵同学有头脑,就是不爱用正道;上课爱做小动作,插话接舌瞎胡闹;学习态度不太好,学习成绩不大妙;你若聪明应知道,有才不用是草包;劝你来期赶紧改,
2012年全国公路水路交通固定资产投资14512亿元,占全社会固定资产投资的3.9%。分地区看,西部地区交通固定资产投资5400亿元,所占比重为37.2%,比上年提高1.2个百分点;东、中部地区交通固定资产投资分别为5479亿元、3633亿元,所占比重分别
一个信息系统集成项目有A、B、C、D、E、F、G共7个活动。各个活动的顺序关系、计划进度和成本预算如下图所示,大写字母为活动名称,其后面括号中的第一个数字是该活动计划进度持续的周数,第二个数字是该活动的成本预算,单位是万元。该项目资金分三次投入,分别在第1
A、Theywillremindthemofdifferentstagesoftheirmarriage.B、Theycansaysomethingmoresentimentalintheletters.C、They
最新回复
(
0
)