首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型 f(x1,x2,x3)=x12+x22+x32-4x1x2-4x1x3+2ax2x3 通过正交变换x=Py化成标准形f=3y12+3y22+by32,求参数a,b及正交矩阵P。
已知二次型 f(x1,x2,x3)=x12+x22+x32-4x1x2-4x1x3+2ax2x3 通过正交变换x=Py化成标准形f=3y12+3y22+by32,求参数a,b及正交矩阵P。
admin
2018-01-26
80
问题
已知二次型
f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+x
3
2
-4x
1
x
2
-4x
1
x
3
+2ax
2
x
3
通过正交变换x=Py化成标准形f=3y
1
2
+3y
2
2
+by
3
2
,求参数a,b及正交矩阵P。
选项
答案
由题意,二次型f及其标准形的矩阵分别是 [*] 在正交变换下A与Λ相似,故有 [*] =-2(a+2)
2
=0, 解得a=-2,b=-3。 于是,矩阵A的特征值是3,3,-3。 当λ=3时,由(3E-A)x=0,系数矩阵 [*] 得基础解系α
1
=(-1,1,0)
t
,α
2
=(-1,0,1)
T
,即λ=3有两个线性无关的特征向量。 当λ=-3时,由(-3E-A)x=0,系数矩阵 [*] 得基础解系α
3
=(1,1,1)
T
,即λ=-3的特征向量。 由于λ=3的特征向量α
1
,α
2
不正交,故需施密特正交化。 令β
1
=α
1
=[*],则 β
2
=α
2
-([α
2
,β
1
]/[β
1
,β
1
])β=[*] 将三个特征向量单位化,有 [*] 那么,所用坐标变换x=Py中,正交矩阵 P=(γ
1
,γ
2
,γ
3
)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Zcr4777K
0
考研数学一
相关试题推荐
f(x)在[-1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f’’’(ξ)=3.
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
求幂级数的收敛域与和函数,并求的和.
设来自总体X的简单随机样本X1,X2,…,Xn,总体X的概率分布为其中0<θ<1.分别以v1,v2表示X1,X2,…,Xn中1,2出现的次数,试求未知参数θ的矩估计量;
已知X具有概率密度(1)求未知参数α的矩估计和最大似然估计;(2)验证所求得的矩估计是否为α的无偏估计.
已知r(A)=r1,且方程组Ax=α有解r(B)=r2,=R(B)=R2无解,设A=[α1,α2,…,αN],B=[β1β2……βn],且r(α1,α2……αn,β1β2……βn,β)=r,则()
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,向量组α1,α2,α3,α4线性无关;
已知二次型f(x1,x2,x3)=2x12+x22+x32+2tx1x2+tx2x3是正定的,则t的取值范围是____________.
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(I)和(Ⅱ)的公共解.
若P(x,y),Q(x,y)在单连通域G内有一阶连续偏导数,且对G内任意简单闭曲线L有,则③曲线积分与路径无关;④P(x,y)dx+Q(x,y)dy是某个函数μ(x,y)的全微分。这四种说法中正确的是()。
随机试题
宫颈癌根治术后,可以拔除尿管的时间是术后
男性,2岁,其母亲述该患儿夜惊、易激惹。体检示双脚并立时,两膝部不能并拢,胸骨外凸,牙齿稀疏,囟门未完全闭合,腹部膨隆。该维生素缺乏若出现在成年人,可出现()。
施工定额直接应用于施工项目的管理,用来()等。
成语“退避三舍”与下列哪次战役有关?()
阅读材料,回答问题。材料一汴京是当时世界人口最多的城市,它的面积34平方千米,比唐长安城要小,但是人口总数却达到140万左右,密度之高非常惊人。城内有8万多名各类工匠以及2万多家商店。流传至今的张择端的《清明上河图》以生动而细致的笔触定格了当时的
网络流行语、时尚流行语、电视娱乐节目语言、街头广告语的_________,造成大量的汉字被更改与_________,使原本规范化的汉字变得别扭,有的甚至_________,这种滥用与破坏,使原本纯洁美丽的汉字变得丑陋不堪。依次填入横线部分最恰当的
下列关于社会主义民主政治的叙述,错误的是:
设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为()
There’sahugehoo-hainAmericaaboutanarticlepublishedonthebusinesswebsiteForbes.com.Itstartsofflikethis:"Guys:
下列各组类型声明符中,含义相同的一组是()。
最新回复
(
0
)